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a b s t r a c t

This paper is devoted to a family of Newton-like methods with frozen derivatives used
to approximate a locally unique solution of an equation. We perform a convergence
study and an analysis of the efficiency. This analysis gives us the opportunity to select
the most efficient method in the family without the necessity of their implementation.
The method can be applied to many type of problems, including the discretization of
ordinary differential equations, integral equations, integro-differential equations or par-
tial differential equations. Moreover, multi-step iterative methods are computationally
attractive.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction and review

Iterative methods for solving nonlinear systems of equations are an important research topic in Numerical Analysis.
Nonlinear systems of equations appear for instance when discretizing ordinary differential equations, integral equations,
integro-differential equations or partial differential equations. In particular, we mention a relevant application in signal
processing: image denoising (see, e.g. [1,2]). Let f : Ω → R be a noisy image, to improve it, we solve the following
optimization problem

Minimize u : R(u)

subject to ∥u − f ∥2
L2(Ω) = E

(∫
Ω

(u − f )2dx
)
,

(1)

where E is the expectation of the random variable X and R(u) is the regularization functional as R(u) = ∥u∥ or ∥∆(u)∥,
where ∆ is the Laplacian (see [3]). However, using these functionals the edges of the images cannot be satisfactorily
recovered. In [4], the TV-norm is proposed:

TV (u) =

∫
Ω

|∇u(x)|dx, (2)
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being ∇ the gradient. Thus, if there is not a good estimation to the variance of the noise, we can consider the unconstrained
optimization problem. The Euler–Lagrange equation becomes

− ∇ ·

(
∇u
|∇u|

)
+ λ(u − f ) = 0, (3)

being λ a positive parameter which establishes the relative importance of the smoothness of u and the quality of the
approximation to the given signal f (see [1]). In [2] a linearization based on a dual variable is proposed introducing in
Eq. (3) the following new variable with ϵ a regularized parameter:

w =
∇u√

|∇u|2 + ϵ
.

Then, we get

− ∇ · w + λ(u − f ) = 0,

w

√
|∇u|2 + ϵ − ∇u = 0.

(4)

Using the discretization showed in [1] for a regular mesh h = 1/m, m ∈ N, xi = i · h, i = 0, . . . ,m, if in each iteration
n we approximate the divergence and the gradient operators by

∇ · v(xi) =
vi − vi−1

h
,

we obtain the following problem:

−
wi − wi−1

h
+ λ(ui − fi) = 0, w1 = wm = 0,

wi ·

√(
ui − ui−1

h

)2

+ ϵ −
ui − ui−1

h
= 0, u0 = f0, um = fm,

(5)

for i = 1, . . . ,m − 1. Then, we can define the following nonlinear operator:

F2i−1(u, w, λh, ϵh) = −wi − wi−1 + λh(ui − fi) = 0,

F2i(u, w, λh, ϵh) = wi ·

√
(ui − ui−1)

2
+ ϵh − ui − ui−1 = 0,

(6)

with λh = hλ, ϵh = h2ϵ, w0 = wm = 0, u0 = f0 and um = fm. This nonlinear system is approximated in Matlab using
the classical Newton method (see [1,2,5]). This is a basic iterative method for solving nonlinear systems of equations.
This method is a second order iterative scheme using only first derivatives. The classical higher order methods, like
Chebyshev or Halley iterative methods, compute high order derivatives. This fact increases too much the computational
cost in general. However, it is possible to increase the order making several Newton-type steps. An appropriated procedure
is to consider a freeze Jacobian since in this case the computational cost to solve the associated linear systems can be
also reduced. In this paper, we study a novel multi-step iterative method for solving systems of nonlinear equations
by introducing a parameter θ to generalize the multi-step Newton method while keeping its order of convergence and
computational cost. By an appropriate selection of θ , the new method can both have faster convergence and have larger
radius of convergence [6].

Let F : Ω ⊂ B1 → B2 be a continuously differentiable operator in the sense of Fréchet, where Ω is a nonempty convex
set and B1, B2 are Banach spaces. Consider the equation

F (x) = 0. (7)

Let y(0)0 ∈ Ω . We study the method defined for each n = 0, 1, 2, . . . by:

Base part →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F ′(y(n)0 )φ1 = F (y(n)0 )

y(n)1 = y(n)0 − (1 + θ − θ2)φ1

F ′(y(n)0 )φ2 = F (y(n)0 −
1
θ
φ1)

y(n)2 = y(n)1 − θ2φ2

(8)

Multi-step part →

⎧⎪⎨⎪⎩
For i = 1, . . . ,m − 2

F ′(y(n)0 )φi+2 = F (y(n)i+1)

y(n)i+2 = y(n)i+1 − φi+2

(9)

Set y(n+1)
= y(n+1)

0 = y(n)m and y(0) = y(0)0 .
This new method produces relevant results as we can see in the following example shown in [6]. They applied it in

comparison with the known iterative method resulting when θ = 1 (see [7]) to solve a system of nonlinear equations in a
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Table 1
Comparison between the method with θ = 1, 2 for the test problem, Eq. (10), with
domain Λ = [1, 1] × [0, 1.3], [6].
m θ = 2

Eu Ev Ew
1 2.3489 1.8274 0.49851
2 1.1081 0.54759 0.96708
7 0.10085 0.067689 0.029542
13 6.2449e−05 7.1607e−05 1.8598e−05
17 2.4756e−07 3.291e−07 7.4927e−08
19 1.9145e−08 2.1149e−08 5.7041e−09
22 5.151e−10 6.2691e−10 1.1519e−10
23 2.9278e−10 1.2219e−10 9.2533e−11
24 5.3785e−11 6.9398e−11 7.4369e−11

m θ = 1

Eu Ev Ew
1 0.86782 1.1797 0.23024
2 1.5424 1.9725 0.96708
3 5.615 3.8987 0.95367
4 15.611 20.172 1.5002
5 348.08 205.49 3.8896
6 2.355e+05 5.6693e+05 9506.1
7 7.8999e+14 2.5429e+14 1.1504e+12
8 3.528e+42 5.2674e+42 1.3026e+31
9 1.8566e+127 1.1924e+127 2.1703e+86

complex generalized Zakharov system of partial differential equations (see more details in [6] and the references therein).
The problem test is [6,8]

i∂tψ + ∂xxψ + 2ψw − 2|ψ |
2

= 0,

∂ttw − ∂xxw + ∂xx|ψ |
2

= 0,
(10)

with the domain Λ = [−1, 1] × [0, 1.3], subject to initial and boundary conditions. The errors are computed over the
entire grid as

Eϕ = max
(x,t)∈Λ

|ϕ(x, t) − ϕnum(x, t)|,

where Λ is the grid of values for (x, t) used in the discretization, and ϕnum(x, t), are the computed numerical values of
the functions ξ (x, t) with ϕ = u, v, ω. The errors obtained are summarized in Table 1. As we can see, the novel method
improves the results.

Remark 1. When the finite difference and pseudospectral methods are compared with respect to cost and accuracy we
conclude that the method of choice is dependent on the accuracy required. Specifically:

1. If high accuracy is required, without concern for cost, the standard pseudospectral method is the method of choice,
giving the least error.

2. The local form of the frozen derivatives formulation poses more and more problems as the order of the differ-
ential equation increases and the order of the spatial approximation to the derivatives becomes wider. Because
pseudospectral methods are inherently global this is not an issue.

3. For moderate accuracy the frozen derivatives seem more efficient.

See [6,9].

Our first contribution is the study of its convergence. We consider both local and semilocal convergence. In the first
case we find hypothesis on the solution and in the second case on the initial guess. We also perform an analysis on
the efficiency. We will be able to select the best method in the family before to compute the approximations. The best
method will depend not only on the problem but also on the number of equations [1]. Our study will be performed in a
general setting in order to consider a bigger number of problems. Indeed, we consider operators between Banach spaces
and the derivatives in the Fréchet sense. In any case, as a particular case, we can derive the convergence for systems of
real equations.

2. Local convergence analysis

We shall introduce some scalar functions and some parameters to show the local convergence analysis of the proposed
method.
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Set I0 = R
⋃

{0}. Let λ0 : I0 → R+ be a continuous and increasing function with λ0(0) = 0.
Suppose that equation

λ0(t) = 1 (11)

has at least one positive solution.
Denote by ρ0 the smallest such solution. Let θ ∈ R \ {0} or θ ∈ C \ {0} be a given parameter and set I1 = [0, ρ0).
Let λ : I1 → R+ and µ : I1 → R+ be continuous and increasing functions with λ(0) = 0.
Define scalar functions hi, h̄i, i = 0, 1, . . . ,m − 2 on the interval I1 by

h0(t) =

∫ 1
0 λ((1 − τ )t)dτ + |1 −

1
θ
|
∫ 1
0 µ(τ t)dτ

1 − λ0(t)
,

h1(t) =

∫ 1
0 λ((1 − τ )t)dτ + |θ (1 − θ )|

∫ 1
0 µ(τ t)dτ

1 − λ0(t)
,

h2(t) = h1(t) +
|θ |2

∫ 1
0 µ(τh0(t)t)dτh0(t)

1 − λ0(t)
,

for i = 1, 2, . . . ,m − 2

hi+2(t) =

(
1 +

∫ 1
0 µ(τ t)dτ
1 − λ0(t)

)i

h2(t),

h̄0(t) = h0(t) − 1,
h̄1(t) = h1(t) − 1,
h̄2(t) = h2(t) − 1

and

h̄i+2(t) = hi+2(t) − 1.

Suppose that

|1 − θ |µ(0)
|θ |

− 1 < 0. (12)

We have by the definition of function h̄0(t), (11) and (12) that h̄0(0) < 0 and limt→ρ−

0
h̄0(t) = +∞.

Then, the intermediate value theorem guarantees that the equation h̄0(t) = 0 has solutions on the interval I2 = [0, ρ0).
Denote by ρ̄0 the smallest such solution.

Suppose that

(1 + µ(0))m−1µ(0)|θ (1 − θ )| − 1 < 0. (13)

It follows by the definition of functions h̄i, i = 1, 2, . . . ,m − 2, (11) and (13) that h̄i(0) < 0 and limt→ρ−

0
h̄i(t) = +∞.

Denote by ρi the smallest solutions on interval I2 of equations h̄i(t) = 0, respectively.
Define the radius of convergence ρ by

ρ = min{ρ̄0, ρi}, i = 1, 2, . . . ,m − 2. (14)

It follows that for each t ∈ [0, ρ)

0 ≤ λ0(t) < 1 (15)

and

0 ≤ hi(t) < 1. (16)

Let B(v, ξ ), B̄(v, ξ ) stand, for the open and closed balls in B1, respectively with center v ∈ B1 and of radius ξ > 0.
The local convergence analysis of the proposed method uses an aforementioned notation and the conditions:
(a1) F : Ω ⊂ B1 → B2 is continuously differentiable operator in the Fréchet sense and there exists p ∈ Ω such that

F (p) = 0 and F ′(p)−1
∈ L(B2, B1).

(a2) There exists a function λ0 : I0 → R+ continuous and increasing with λ0(0) = 0 such that for each x ∈ Ω

∥F ′(p)−1(F ′(x) − F ′(p))∥ ≤ λ0(∥x − p∥).

Set Ω0 = Ω
⋂

B(p, ρ0), where ρ0 is given by (11).
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(a3) There exist functions λ : I1 → R+, µ : I1 → R+ continuous and increasing with λ(0) = 0 such that for each
x, y ∈ Ω0

∥F ′(p)−1(F ′(x) − F ′(y))∥ ≤ λ(∥x − y∥)

and

∥F ′(p)−1F ′(x)∥ ≤ µ(∥x − p∥).

(a4) B̄(p, ρ) ⊆ Ω and conditions (12) and (13) hold, where ρ exists and is given in (11).
(a5) There exists ρ∗

≥ ρ such that∫ 1

0
λ0(τρ∗)dτ < 1.

Set Ω1 = Ω
⋂

B̄(p, ρ∗).
We can now show the local convergence analysis of the proposed method.

Theorem 1. Suppose that the conditions (ai), i = 1, 2, . . . , 5 hold. Then, the proposed method for y0 ∈ B(p, ρ)\{p} converges
to p which is the only solution of equation F (x) = 0 in Ω1.

Proof. Let u ∈ B(p, ρ). Using (11), (14), (15), (a1) and (a2), we have that

∥F ′(p)−1(F ′(u) − F ′(p))∥ ≤ λ0(∥u − p∥) ≤ λ0(ρ) < 1. (17)

The Banach lemma on invertible operators and (17) assure that F ′(u)−1
∈ L(B2, B1) and

∥F ′(u)−1F ′(p)∥ ≤
1

1 − λ0(∥u − p∥)
. (18)

It also follows from (18) for u = y(0)0 that F ′(y(0)0 )−1
∈ L(B2, B1), (18) holds for u = p and

y(0)1 = y(0)0 − (1 + θ − θ2)F ′(y(0)0 )−1F (y(0)0 ), (19)

is well defined.
By (a1), we can write

F (u) = F (u) − F (p) =

∫ 1

0
F ′(p + τ (u − p))dτ (u − p). (20)

Notice that

∥p + τ (u − p) − p∥ = τ∥u − p∥ < ρ, (21)

so p + τ (u − p) ∈ B(p, ρ) for each τ ∈ [0, 1].
Then, by the second condition in (a3) and (20), we get that

∥F ′(p)−1F (u)∥ = ∥

∫ 1

0
F ′(p)−1F ′(p + τ (u − p))dτ (u − p)∥ (22)

≤

∫ 1

0
µ(τ (∥u − p∥))dτ∥u − p∥.

We also have by the first condition in (a3), (a1) and (18) (for u = y(0)0 ) that

∥y(0)0 − p − F ′(y(0)0 )−1F (y(0)0 )∥ ≤ ∥F ′(y(0)0 )−1F ′(p)∥ (23)

∥

∫ 1

0
F ′(p)−1(F ′(p + τ (y(0)0 − p)) − F ′(y(0)0 ))(y(0)0 − p)dτ∥

≤

∫ 1
0 λ((1 − τ )∥y(0)0 − p∥)dτ∥y(0)0 − p∥

1 − λ0(∥y
(0)
0 − p∥)

.

By (14), (16) (for i = 1), (18) (for u = y(0)0 ), (19), (22) and (23), we obtain in turn that

∥y(0)1 − p∥ = ∥(y(0)0 − p − F ′(y(0)0 )−1F (y(0)0 )) − θ (1 − θ )F ′(y(0)0 )−1F (y(0)0 )∥ (24)

≤ ∥y(0)0 − p − F ′(y(0)0 )−1F (y(0)0 )∥ + |θ (1 − θ )| ∥F ′(y(0)0 )−1F ′(p)∥ ∥F ′(p)−1F (y(0)0 )∥
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≤

∫ 1
0 λ((1 − τ )∥y(0)0 − p∥)dτ∥y(0)0 − p∥ + |θ (1 − θ )|

∫ 1
0 µ(τ∥y

(0)
0 − p∥)dτ∥y(0)0 − p∥

1 − λ0(∥y
(0)
0 − p∥)

= h1(∥y
(0)
0 − p∥)∥y(0)0 − p∥ ≤ ∥y(0)0 − p∥ < ρ,

so y(0)1 ∈ B(p, ρ).
We need to show that v = y(0)0 −

1
θ
F ′(y(0)0 )−1F (y(0)0 ) ∈ B(p, ρ).

As in (24) but using (16) (for i = 0), we get in turn that

∥v − p∥ = ∥y0 − p −
1
θ
F ′(y0)−1F (y0)∥ (25)

= ∥(y0 − p − F ′(y0)−1F (y0)) + (1 −
1
θ
)F ′(y0)−1F (y0)∥

≤ ∥y0 − p − F ′(y0)−1F (y0)∥ + |1 −
1
θ

| ∥F ′(y0)−1F ′(p)∥ ∥F ′(p)−1F (y0)∥

≤
[
∫ 1
0 λ((1 − τ )∥y0 − p∥)dτ + |1 −

1
θ
|
∫ 1
0 µ(τ∥y0 − p∥)dτ ]∥y0 − p∥

1 − λ0(∥y0 − p∥)

= h0(∥y
(0)
0 − p∥)∥y(0)0 − p∥ ≤ ∥y(0)0 − p∥ < ρ,

so v ∈ B(p, ρ). It also follows that

y(0)2 = y(0)1 − θ2F ′(y(0)0 )−1F (v), (26)

is well defined.
We have using (25) that

∥p + τ (y(0)0 −
1
θ
F−1(y(0)0 )−1F (y(0)0 )) − p∥ ≤ |τ |∥v∥ ≤ ∥v∥ < ρ, (27)

so v̄ = p + τ (y(0)0 −
1
θ
F ′(y(0)0 )−1F (y(0)0 )) ∈ B(p, ρ).

Then, using (14), (16) (for i = 2), (22) (for u = v̄) and (25), we have in turn that

∥y(0)2 − p∥ = ∥(y(0)1 − p) − θ2F ′(y(0)0 )−1F (v)∥ (28)

≤ ∥y(0)1 − p∥ + θ2∥F ′(y(0)0 )−1F ′(p)∥ ∥F ′(p)−1F (v)∥

≤ (h1(∥y
(0)
0 − p∥) +

θ2
∫ 1
0 µ(τh0(∥y

(0)
0 − p∥)∥y(0)0 − p∥)dτh0(∥y

(0)
0 − p∥)

1 − λ0(∥y
(0)
0 − p∥)

)∥y(0)0 − p∥

= h2(∥y
(0)
0 − p∥)∥y(0)0 − p∥ ≤ ∥y(0)0 − p∥ < ρ,

so y(0)2 ∈ B(p, ρ).
Similarly, by (14), (16) (for i = 3), (18) (for u = y0), (22) (for u = y(0)2 ), (28), and

y(0)3 = y(0)2 − F ′(y(0)0 )−1F (y(0)2 ), (29)

we have in turn that

∥y(0)3 − p∥ = ∥(y(0)2 − p) − F ′(y(0)0 )−1F (y(0)2 )∥ (30)

≤ ∥y(0)2 − p∥ +

∫ 1
0 µ(τ∥y

(0)
2 − p∥)dτ∥y(0)2 − p∥

1 − λ0(∥y
(0)
0 − p∥)

= h3(∥y
(0)
0 − p∥)∥y(0)0 − p∥ ≤ ∥y(0)0 − p∥ < ρ,

so y(0)3 ∈ B(p, ρ).
Then, since for each i = 1, 2, . . . ,m − 2,

y(0)i+2 = y(0)i+1 − F ′(y(0)0 )−1F (y(0)i+1), (31)

we obtain in turn that

∥y(0)i+2 − p∥ = ∥(y(0)i+1 − p) − F ′(y(0)0 )−1F (y(0)i+1)∥ (32)

≤ ∥y(0)i+1 − p∥ +

∫ 1
0 µ(τ∥y

(0)
i+1 − p∥)dτ∥y(0)i+1 − p∥

1 − λ0(∥y
(0)
0 − p∥)
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≤ (1 +

∫ 1
0 µ(τ∥y

(0)
i+1 − p∥)dτ

1 − λ0(∥y
(0)
0 − p∥)

)∥y(0)i+1 − p∥

= hi+2(∥y
(0)
0 − p∥)∥y(0)0 − p∥ ≤ ∥y(0)0 − p∥ < ρ,

so y(0)i+1 ∈ B(p, ρ).
In particular, by the definition of the method for i = m − 2, estimate (32) gives

∥y(1) − p∥ ≤ c∥y(0) − p∥, (33)

where c = hm(∥y(0) − p∥) ∈ [0, 1).
By simply replacing y(0), y(1) by y(n), y(n+1), respectively in the preceding estimates we get

∥y(n+1)
− p∥ ≤ c∥y(n) − p∥ < ρ, (34)

so y(n+1)
∈ B(p, ρ).

By letting n → +∞ in (34), we obtain limn→+∞ y(n) = p.
Finally, to show the uniqueness part, let q ∈ Ω1 with F (q) = 0. Define T =

∫ 1
0 F ′(q+ τ (p− q))dτ . Using (a5), we obtain

in turn that

∥F ′(p)−1(T − F ′(p))∥ ≤

∫ 1

0
λ0(τ∥p − q∥)dτ

≤

∫ 1

0
λ0(τρ∗)dτ < 1,

so T−1
∈ L(B2, B1), and from the identity

0 = F (p) − F (q) = T (p − q),

we obtain p = q. □

3. Semilocal convergence analysis

We shall introduce some scalar parameters to assist us with the semilocal convergence analysis that follows.
Let Ψ0 : I0 → I0 be a continuous and increasing function with Ψ0(0) = 0. Suppose that equation

a0Ψ0(t) = 1, (35)

for some a0 > 0 has at least one positive solution. Denote by r0 the smallest such solution.
Let Ψ : [0, r0) → I0 and Ψ1 : [0, r0) → I0 be continuous and increasing functions with Ψ (0) = 0.
Let η ≥ 0 be a parameter. Define:

b0 =

∫ 1

0
Ψ0(τ |1 + θ − θ2|a0η)dτ + |θ (1 − θ )|,

a10 =

∫ 1

0
Ψ0(τ |

1
θ

|a0η)dτ |
1
θ

|a0η + |
1
θ

|a0η + a0,

η̄ = (θ2a10 + |1 + θ − θ2|)a0η,

a1 = a1(t) =
a0

1 − a0Ψ (t)
,

a = a(t) = a0 max{θ2a10,
∫ 1

0
Ψ0(|1 + θ − θ2|a0η + τθ2a0a10η)dτθ

2a10,
∫ 1

0
Ψ0(t + τη)dτ }

δ0 = δ0(t) =

∫ 1

0
Ψ0(t + τam−1η)dτam−1

b0 = |1 + θ − θ2|a1δ0,

b1 = [

∫ 1

0
Ψ (τb0η)dτ + |θ (1 − θ )|Ψ1(t)]b0

b = b(t) = max

⎧⎨⎩b1, b1a1,

√∫ 1

0
Ψ (t + τη)dη + b1

⎫⎬⎭ .
We shall use the following conditions in the semilocal convergence analysis of the proposed method:
(h1) F : Ω ⊆ B1 → B2 is continuously differentiable in the sense of Fréchet and there exists y0 ∈ Ω such that

F ′(y0)−1
∈ L(B2, B1) with ∥F ′(y0)−1

∥ ≤ a0.
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(h2) There exists function Ψ0 : I0 → I0 continuous and increasing such that for each x ∈ Ω

∥F ′(x) − F ′(y0)∥ ≤ Ψ0(∥x − x0∥).

Set Ω2 = Ω
⋂

B(y0, r0) and I3 = [0, r0), where r0 is given by (35).
(h3) There exist functions Ψ : I3 → I0 and Ψ1 : I3 → I0 continuous and increasing such that for each x, y ∈ Ω2

∥F ′(x) − F ′(y)∥ ≤ Ψ (∥x − y∥)

and

∥F ′(x)∥ ≤ Ψ1(∥x − y0∥).

(h4) Equation

(
a

1 − a
+

b
1 − b

+ |1 + θ − θ2|a0 + b0)η − t = 0

has at least one positive solution. Denote by r the smallest such solution.
(h5) The following hold a(r) < 1, b(r) < 1,

(θ2a10 + |1 + θ − θ2|)a0η < r,

|
1
θ

|a0η < r

and

(
a

1 − a
+ |1 + θ − θ2|a0 + |

1
θ

|a1b1)η < r.

(h6) B̄(y0, r) ⊆ Ω .
(h7) There exists r∗

≥ r such that

a0

∫ 1

0
Ψ0((1 − τ )r∗

+ τ r)dτ < 1.

Set Ω3 = Ω
⋂

B(y0, r∗).
The main result on the semilocal convergence of the proposed method is provided under the previously introduced

notation and conditions.

Theorem 2. Suppose that the conditions (h1)–(h7) hold. Then, the proposed method starting at y0 generates a sequence
converging to a solution p ∈ B̄(y0, r) of equation F (x) = 0. The limit p is the unique solution of the equation F (x) = 0 in
Ω3.

Proof. Iterates y(0)1 , y
(0)
2 , . . . , y

(0)
i+2, i = 1, 2, . . . ,m − 2, are well defined by condition (h1) and are given by

y(0)1 = y(0)0 − (1 + θ − θ2)F ′(y(0)0 )−1F (y(0)0 ), (36)

y(0)2 = y(0)1 − θ2F ′(y(0)0 )−1F (y(0)0 −
1
θ
F ′(y(0)0 )−1F (y(0)0 )),

y(0)3 = y(0)2 − F ′(y(0)0 )−1F (y(0)2 ),
...

y(0)i+2 = y(0)i+1 − F ′(y(0)0 )−1F (y(0)i+1).

By the first substep of the proposed method, we can write (by (h5))

∥y(0)1 − y(0)0 ∥ = ∥(1 + θ − θ2)F ′(y(0)0 )−1F (y(0)0 )∥ (37)

≤ |1 + θ − θ2| ∥F ′(y(0)0 )−1
∥ ∥F (y(0)0 )∥

≤ |1 + θ − θ2| a0 η < r,

so y(0)1 ∈ B(y0, r) and

F (y(0)1 ) = F (y(0)1 ) − (1 + θ − θ2)F (y(0)0 ) − F ′(y(0)0 )(y(0)1 − y(0)0 ) (38)

= F (y(0)1 ) − F (y(0)0 ) − F ′(y(0)0 )(y(0)1 − y(0)0 ) − θ (1 − θ )F (y(0)0 ).
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Using (36), (h2), (37) and (38), we have in turn that

∥F (y(0)1 )∥ = ∥

∫ 1

0
(F ′(y(0)0 + τ (y(0)1 − y(0)0 )) − F ′(y(0)0 ))dτ (y(0)1 − y(0)0 ) (39)

−θ (1 − θ )F (y(0)0 ) ∥

≤

∫ 1

0
Ψ0(τ∥y

(0)
1 − y(0)0 ∥)dτ∥y(0)1 − y(0)0 ∥ + |θ (1 − θ )| ∥F (y(0)0 )∥

≤ (
∫ 1

0
Ψ0(τ |1 + θ − θ2|a0η)dτ + |θ (1 − θ )|)η = b0η.

Let w = y(0)0 −
1
θ
F ′(y(0)0 )−1F (y(0)0 ). We get by (h5)

∥w − y(0)0 ∥ = ∥
1
θ
F ′(y(0)0 )−1F (y(0)0 )∥ ≤ |

1
θ

|a0η < r, (40)

so w ∈ B(y(0)0 , r) and

∥F ′(y(0)0 )−1F (w)∥ = ∥F ′(y(0)0 )−1(F (w) − F (y(0)0 ) + F (y(0)0 ))∥ (41)

≤ ∥

∫ 1

0
F ′(y(0)0 + τ (w − y(0)0 ))dτ (w − y(0)0 ) − F ′(y(0)0 )(w − y(0)0 )

+F ′(y(0)0 )(w − y(0)0 ) + F (y(0)0 ) ∥

≤ a0

∫ 1

0
Ψ0(τ∥w − y(0)0 ∥)dτ∥w − y(0)0 ∥ + ∥w − y(0)0 ∥ + a0 ∥F (y(0)0 )∥

≤ a0

∫ 1

0
Ψ0(τ |

1
θ

|a0η)dτ |
1
θ

|a0η + |
1
θ

|a0η + a0η

= a10η.

By (36) and (41), we get

∥y(0)2 − y(0)1 ∥ = ∥θ2F ′(y(0)0 )−1F (w)∥ ≤ θ2a10a0η ≤ aη (42)

and by (h5)

∥y(0)2 − y(0)0 ∥ ≤ ∥y(0)2 − y(0)1 ∥ + ∥y(0)1 − y(0)0 ∥ ≤ (θ2ā0 + |1 + θ − θ2|)a0η = η̄ < r, (43)

so y(0)2 ∈ B(y(0)0 , r).
Similarly, we have from

F (y(0)2 ) = F (y(0)2 ) − F (y(0)1 ) + F (y(0)1 )

=

∫ 1

0
F ′(y(0)1 + τ (y(0)2 − y(0)1 ))dτ (y(0)2 − y(0)1 ) + F (y(0)1 )

that

∥F (y(0)2 )∥ ≤

∫ 1

0
Ψ1(∥y

(0)
1 − y(0)0 ∥ + τ∥y(0)2 − y(0)1 ∥)dτ∥y(0)2 − y(0)1 ∥ + ∥F (y(0)1 )∥

≤

∫ 1

0
Ψ1(|1 + θ − θ2|a0η + τθ2a10a0η)dτθ

2a10a0η

≤
a2η
a0
,

∥y(0)3 − y(0)2 ∥ = ∥F ′(y(0)0 )−1F (y(0)2 )∥ ≤ a0
a2η
a0

= a2η,

∥y(0)3 − y(0)0 ∥ ≤ ∥y(0)3 − y(0)2 ∥ + ∥y(0)2 − y(0)0 ∥ ≤ a2η + η̄ < r,

∥F (y(0)3 )∥ ≤

∫ 1

0
Ψ0(∥y

(0)
2 − y(0)0 ∥ + τ∥y(0)3 − y(0)2 ∥)dτ∥y(0)3 − y(0)2 ∥

≤

∫ 1

0
Ψ0(r + τa2η)dτa2η ≤

a3

a0
η,

∥y(0)4 − y(0)3 ∥ ≤ a0

∫ 1

0
Ψ0(r + τa2η)

a3

a0
η = a3η,
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and

∥y(0)4 − y(0)0 ∥ ≤ ∥y(0)4 − y(0)3 ∥ + ∥y(0)3 − y(0)2 ∥ + ∥y(0)2 − y(0)1 ∥ + ∥y(0)1 − y(0)0 ∥

≤ a3η + a2η + aη + |1 + θ − θ2|a0η

= aη
1 − a3

1 − a
+ |1 + θ − θ2|a0η

<
aη

1 − a
+ |1 + θ − θ2|a0η < r,

so y(0)4 ∈ B(y(0)0 , r). Similarly, we get

∥F (y(0)i )∥ ≤
ai

a0
η, i = 3, 4, . . . ,m, (44)

∥y(0)i+2 − y(0)i+1∥ ≤ ai+1η, i = 3, 4, . . . ,m − 2 (45)

and

∥y(0)i+2 − y(0)0 ∥ ≤ (
a

1 − a
+ |1 + θ − θ2|a0)η < r. (46)

That is y(1)0 = y(0)m ∈ B(x0, r). By the definition of the method

F (y(1)0 ) = F (y(0)m ) − F (y(0)m−1) − F ′(y(0)0 )(ym − y(0)m−1)

=

∫ 1

0
[F ′(y(0)m−1 + τ (y(0)m − y(0)m−1)) − F ′(y(0)0 )]dτ (y(0)m − y(0)m−1),

so

∥F (y(1)0 )∥ ≤

∫ 1

0
Ψ0(∥y(0)m − y(0)0 ∥ + τ∥y(0)m − y(0)m−1∥)dτ∥y

(0)
m − y(0)m−1∥

≤

∫ 1

0
Ψ0(r + τam−1η)dτam−1η = δ0η.

Next, we shall show that F ′(x)−1
∈ L(B2, B1) provided that x ∈ B(y0, r). We obtain in turn that since r < r0 (by (35))

∥F ′(y(0)0 )−1
∥ ∥F ′(x) − F ′(y(0)0 )∥ ≤ a0Ψ0(∥x − y(0)0 ∥) ≤ a0Ψ (r) < 1,

so F ′(x)−1
∈ L(B2, B1) and

∥F ′(x)−1
∥ ≤

a0
1 − a0Ψ0(r)

= a1. (47)

It follows from (36) that

∥y(1)1 − y(1)0 ∥ ≤ |1 + θ − θ2| ∥F ′(y(1)0 )−1
∥ ∥F (y(1)0 )∥

≤ |1 + θ − θ2|a1δ0η = b0η.

We can write

F (y(1)1 ) = (F (y(1)1 ) − F (y(0)1 ) − F ′(y(1)0 )(y(1)1 − y(1)0 )) − θ (1 − θ )F ′(y(1)0 )(y(1)1 − y(1)0 )

to obtain

∥F (y(1)1 )∥ ≤

∫ 1

0
Ψ (τ∥y(1)1 − y(1)0 ∥)dτ∥y(1)1 − y(1)0 ∥ (48)

+|θ (1 − θ )|∥F ′(y(1)0 )∥∥y(1)1 − y(1)0 ∥

≤

∫ 1

0
Ψ (τb0η)dτb0η + |θ (1 − θ )|Ψ1(r)b0η = b1η.

Let w̄ = y(1)1 −
1
θ
F ′(y(1)0 )−1F (y(1)0 ). We must show w̄ ∈ B(y0, r). Indeed, we have by (h5)

∥w̄ − y(0)0 ∥ ≤ ∥y(1)0 − y(0)0 ∥ + |
1
θ

| ∥F ′(y(1)0 )−1
∥ ∥F (y(1)1 )∥

≤ (
a

1 − a
+ |1 + θ − θ2|a0 + |

1
θ

|a1b1)η < r.
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Then, we get

∥y(2)1 − y(1)1 ∥ ≤ θ2∥F ′(y(1)0 )−1F (w̄)∥ (49)

≤ θ2∥F ′(y(1)0 )−1F (w̄) − F (y(1)0 ) + F (y(1)0 )∥

≤ θ2[ ∥ F ′(y(1)0 )−1(
∫ 1

0
F ′(y(1)0 + τ (w̄ − y(1)0 ))dτ (w̄ − y(1)0 )

−F ′(y(1)0 )(w̄ − y(1)0 ) + F ′(y(1)0 )(w̄ − y(1)0 ) + F (y(1)0 )) ∥ ]

≤ θ2[a1

∫ 1

0
Ψ (τ∥w̄ − y(1)0 ∥)dτ∥w̄ − y(1)0 ∥ + ∥w̄ − y(1)0 ∥ + a1∥F (y

(1)
0 )∥]

≤ θ2[a1

∫ 1

0
Ψ (τ |

1
θ

|a1b1η)dτ |
1
θ

|a1b1η + |
1
θ

|a1b1η + a1δ0η] = aη,

so

∥y(1)0 − y(0)0 ∥ ≤ (
a

1 − a
+ |1 + θ − θ2|a0)η < r,

∥y(1)1 − y0∥ = ∥y(1)1 − y(1)0 ∥ + ∥y(1)0 − y0∥

≤ a0η + (
a

1 − a
+ |1 + θ − θ2|a0)η < r,

and

∥y(2)1 − y(0)0 ∥ ≤ ∥y(2)1 − y(1)1 ∥ + ∥y(1)1 − y(0)0 ∥

≤ aη + a0η + ∥x1 − x0∥

≤ aη + a0η + (
a

1 − a
+ |1 + θ − θ2|a0)η < r,

so y(1)0 , y
(1)
1 , y

(2)
1 ∈ B(y0, r).

Similarly, we can write

F (y(2)1 ) = F (y(2)1 ) − F (y(1)1 ) + F (y(1)1 )

so

∥F (y(2)1 )∥ ≤

∫ 1

0
Ψ1(∥y

(1)
1 − y(0)0 ∥ + τ∥y(2)1 − y(1)1 ∥)dτ∥y(2)1 − y(1)1 ∥ + ∥F (y(1)1 )∥

≤

∫ 1

0
Ψ1(r + τbη)dτbη + b1η ≤

b2η
a1
,

∥y(3)1 − y(2)1 ∥ ≤ ∥F ′(y(2)1 )−1
∥ ∥F (y(2)1 )∥

≤ a1
b2η
a1

= b2η,

∥y(3)1 − y0∥ ≤ ∥y(3)1 − y21∥ + ∥y(2)1 − y(0)0 ∥

≤ b2η + bη + b0η + (
a

1 − a
+ |1 + θ − θ2|a0)η < r,

so y(3)1 ∈ B(y0, r). Hence, we obtain in an analogous way that

∥F (y(i)1 )∥ ≤
bi

a1
η, i = 3, 4, . . . ,m, (50)

∥y(s+2)
1 − y(s+1)

1 ∥ ≤ as+1η, s = 3, 4, . . . ,m − 2 (51)

and

y(i)1 ∈ B(y0, r). (52)

It follows from these estimates and the definition of a and b1 that sequence {xk} is complete in the Banach space B1.
Hence, it converges to some p ∈ B̄(p, r). But sequence {F (xn)} is also bounded from above by the sequence {∥xn − xn−1∥}

leading to

∥F (p)∥ = lim
n→+∞

∥F (xn)∥ ≤ lim
n→+∞

∥xn − xn−1∥ = 0,

so F (p) = 0.
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Table 2
Values of n for optimal efficiency.
m µ1 = 63 µ1 = 12.5

µ0 = µ1 µ0 = 2µ1 µ0 = 4µ1 µ0 = µ1 µ0 = 4µ1 µ0 = 8µ1

2 3 2 1 3 1 1
3 3 2 1 3 2 1
4 4 3 2 4 2 1
5 4 3 2 4 2 1
6 5 3 2 4 2 2
7 5 4 2 5 2 2
8 6 4 3 5 3 2
9 6 4 3 5 3 2
10 7 5 3 6 3 2

Finally, to show the uniqueness part, let T =
∫ 1
0 F ′(q + τ (p − q))dτ for q ∈ Ω3 with F (q) = 0. Then, we obtain in turn

by (h2) and (h7)

∥F ′(y0)−1(T − F ′(y0))∥ ≤ a0

∫ 1

0
Ψ0((1 − τ )∥q − y0∥ + τ∥p − y0∥)dτ

≤ a0

∫ 1

0
Ψ0((1 − τ )r∗

+ τ r)dτ < 1,

so T−1
∈ L(B2, B1). Moreover, by the identity

0 = F (p) − F (q) = T (p − q),

we conclude that p = q. □

4. Optimal computational efficiency

For the study of the efficiency, we suppose that in Eq. (7),

F : Ω ⊂ B1 = Rm
→ B2 = Rm,

with Ω ̸= ∅. We will use the computational efficiency index (CEI) shown in [1] which is defined as:

CEI(n, µ0, µ1,m) = ρ
(a0(n,m)µ0+a1(m)µ1+p(n,m))−1

n ,

where ρn is the local order of convergence in the step n, a0(n,m) and a1(m) are the number of evaluations of the scalar
functions of F and F ′ respectively, the function p(n,m) is the number of products needed per iteration and the ratios µ0
and µ1 between products and evaluations are introduced in order to express the value a0(n,m)µ0+a1(m)µ1+p(n,m) only
in terms of products. We will assume an LU decomposition in order to solve the linear systems. In Eq. (8) we evaluate 2m
component functions andm2 evaluations of scalar functions of the derivatives, the LU decompositions consist in (m3

−m)/3
products/quotients and 2m2 in the solution of four triangular linear systems. Also, we add 3m products corresponding to
parameter. Then, p(1,m) = (m3

− m)/3 + 2m2
+ 3m. After n iterations we have that a0(n,m) = nm, a1(m) = m2,

p(n,m) = (m3
−m)/3+ 3m+ nm2. We only have to know the local order of convergence. For this, we use the following

theorem.

Theorem 3 ([6]). Let F : Ω ⊂ B1 = Rm
→ Rm has at least third order Fréchet derivative on an open convex neighborhood Ω

of x∗
∈ Rm with F (x∗) = 0 and det(F ′(x∗)) ̸= 0. Then, the multi-step iterative method Eqs. (8) and (9) has, for n ≥ 2, local

convergence order at least n + 1.

Therefore, using the same notation of [1], the CEI value is

CEI(n, µ0, µ1,m) = (n + 1)C
−1
,

with C = Mn + N , where M = m(m + µ0) and N =
m
3 (m

2
+ 3µ1m + 8). We calculate the optimal point of CEI for the

iterative method solving d
dn (ln CEI) = 0, then

−1
(Mn + N)2

(
M ln(n + 1) −

Mn + N
n + 1

)
= 0 → (n + 1) ln(n + 1) − n −

N
M

= 0.

Finally,

(n + 1) ln(n + 1) − n −
m2

+ 3µ1m + 8
3(m + µ0)

= 0. (53)

We can solve Eq. (53) in terms of n if m, µ0 and µ1 are given. In Table 2 some values of n are shown as a function of m,
µ0 and µ1 that are positive integer solutions of Eq. (53).



S. Amat, I. Argyros, S. Busquier et al. / Journal of Computational and Applied Mathematics 376 (2020) 112843 13

Acknowledgments

Research of the authors S. Amat and S. Busquier supported in part by Programa de Apoyo a la investigación de
la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI/14 and by MTM2015-64382-P.
Research of the author M. A. Hernández-Verón supported in part by Spanish MCINN PGC2018-095896-B-C21. Research of
the author Dionisio F. Yáñez was partially supported by Spanish MINECO Projects MTM2017-83942-P.

References

[1] S. Amat, S. Busquier, A. Grau, M. Grau-Sánchez, Maximum efficiency for a family of Newton-like methods with frozen derivatives and some
applications, Appl. Math. Comput. 219 (15) (2013) 7954–7963.

[2] T.F. Chan, G.H. Golub, P. Mulet, A nonlinear primal–dual method for total variation-based image restoration, SIAM J. Sci. Comput. 20–6 (1999)
1964–1977.

[3] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems, John Wiley, New York, 1977.
[4] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992) 259–268.
[5] I. Argyros, Á.A. Magreñan, A Contemporary Study of Iterative Methods, Academic Press, Elsevier, 2018.
[6] F. Ahmad, E. Tohidi, J.A. Carrasco, A parameterized multi-step Newton method for solving systems of nonlinear equations, Numer. Algorithms

71 (2016) 631–653.
[7] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, 1964.
[8] A.H. Bhrawy, An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system, Appl. Math. Comput. 247

(2014) 30–46.
[9] R. Renaut, Y. Su, Evaluation of Chebyshev pseudospectral methods for third order differential equations, Numer. Algorithms 16 (1997) 255–281.

http://refhub.elsevier.com/S0377-0427(20)30134-5/sb1
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb1
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb1
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb2
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb2
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb2
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb3
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb4
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb5
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb6
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb6
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb6
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb7
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb8
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb8
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb8
http://refhub.elsevier.com/S0377-0427(20)30134-5/sb9

	On the local and semilocal convergence of a parameterized multi-step Newton method
	Introduction and review
	Local convergence analysis
	Semilocal convergence analysis
	Optimal computational efficiency
	Acknowledgments
	References


