JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:187 |
Affine scaling inexact generalized Newton algorithm with interior backtracking technique for solving bound-constrained semismooth equations | |
Article | |
Zhu, DT | |
关键词: semismooth equation; inexact generalized Newton method; global convergence; affine scaling interior; superlinear convergence; | |
DOI : 10.1016/j.cam.2005.03.045 | |
来源: Elsevier | |
【 摘 要 】
We develop and analyze an affine scaling inexact generalized Newton algorithm in association with nonmonotone interior backtracking line technique for solving systems of semismooth equations subject to bounds on variables. By combining inexact affine scaling generalized Newton with interior backtracking line search technique, each iterate switches to inexact generalized Newton backtracking step to strict interior point feasibility. The global convergence results are developed in a very general setting of computing trial steps by the affine scaling generalized Newton-like method that is augmented by an interior backtracking line search technique projection onto the feasible set. Under some reasonable conditions we establish that close to a regular solution the inexact generalized Newton method is shown to converge locally p-order q-superlinearly. We characterize the order of local convergence based on convergence behavior of the quality of the approximate subdifferentials and indicate how to choose an inexact forcing sequence which preserves the rapid convergence of the proposed algorithm. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases. (c) 2005 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2005_03_045.pdf | 321KB | download |