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Abstract

We develop and analyze an affine scaling inexact generalized Newton algorithm in association with nonmonotone
interior backtracking line technique for solving systems of semismooth equations subject to bounds on variables. By
combining inexact affine scaling generalized Newton with interior backtracking line search technique, each iterate
switches to inexact generalized Newton backtracking step to strict interior point feasibility. The global convergence
results are developed in a very general setting of computing trial steps by the affine scaling generalized Newton-
like method that is augmented by an interior backtracking line search technique projection onto the feasible set.
Under some reasonable conditions we establish that close to a regular solution the inexact generalized Newton
method is shown to converge locally p-order q-superlinearly. We characterize the order of local convergence based
on convergence behavior of the quality of the approximate subdifferentials and indicate how to choose an inexact
forcing sequence which preserves the rapid convergence of the proposed algorithm. A nonmonotonic criterion
should bring about speeding up the convergence progress in some ill-conditioned cases.
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1. Introduction

Consider an affine scaling inexact generalized Newton method for solving systems of the nonsmooth
equations subject to the bound constraints on variable:

H(x) = 0, x ∈ �
def={x | l�x�u}. (1.1)

Hereby, the function H : Rn ⊃ X → Rn is defined on the open set X containing the n-dimensional fea-

sible box constraint set �
def=[l, u] def={x ∈ Rn; li �xi �ui, i =1, . . . , n}. The vector l ∈ (R∪{−∞})n and

u ∈ (R∪{+∞})n are specified lower and upper bounds on the variables such that int(�)
def={x | l < x < u} is

nonempty. Nonsmooth systems (1.1) arise naturally in systems of equations modelling real-life problems
when not all the solutions of the model have physical meaning. Various sources of nonlinear nonsmooth
equations with the box constraint � drawn from mixed nonlinear complementarity problems, nonlin-
ear optimization and several related problems have been described, where � maybe the positive orthant
of Rn or a closed box constraint. In the classic methods for solving the nonlinear smooth equations
(1.1) when the function H(x) is a continuously differentiable function, the Newton methods or quasi-
Newton methods can be used. Computing the exact solution can be expensive if n is large and for any n,
may be justified when x is far from a solution. Much analysis of many inexact and exact Newton algo-
rithms have been done on smooth nonlinear equations but on nonsmooth equations based on convergent
analysis.

These methods by using the Jacobain or version of generalized Newton’s methods often solve the
semismooth systems (1.1), which is known to have locally very rapid convergence. Both the approxi-
mate generalized Newton methods and inexact Newton methods used for semismooth system (1.1) did
not ensure global convergence, that is, the convergence is only local. Therefore, the methods are avail-
able only when the initial start point is good enough. The locally q-superlinear/quadratic convergence
of the algorithm to BD-regular (where “BD” stands for Bouligand differential) solutions of (1.1) will
be achieved by a Newton-type method that is augmented by a projection onto � to maintain feasibility.
Local convergence results for Newton’s method without bound-constraints were established in [12–14].
One effective remedy when this occurs is to restrict the trial step to a region where the linear model can
be trusted. Globally convergent methods for the unconstrained systems H(x) = 0 may be unsuited for
the purpose of solving (1.1), since a vector x∗ satisfy H(x) = 0, but does not belong to �. Brown and
Saad [2] introduced the Euclidean norm, i.e., l2 norm as the merit function to combine the line search
to solving the unconstrained nonlinear smooth systems (1.1) and proved the global convergence of the
proposed algorithms. Recently, Ulbrich in [18] presented a class of double trust-region approaches with
a projection onto the feasible set for bound-constrained semismooth systems of equations (1.1) and fur-
ther proved that close to a regular solution the trust-region algorithm turns into this projected Newton
method, which is shown to converge locally q-superlinearly or quadratically, respectively, depending
on the quality of the approximate subdifferentials used under a Dennis–Moré-type condition [7,8] and
by allowing for inexactness in the computation of B-subdifferentials (where “B” stands for Bouligand).
However, the search direction generated in trust region subproblem must satisfy strict interior feasibil-
ity, i.e., l < xk + s < u, which results in computational difficulties. It is possible that the trust region
subproblem with the strict feasibility constraint needs to be resolved many times before obtaining an
acceptable step [11], and hence the total computational effort for completing one iteration might be
expensive and difficult.
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In this paper, we also introduce the following bound-constrained semismooth minimization as the merit
function to reformulate the problem (1.1):

min h(x)
def= 1

2‖H(x)‖2 s.t. x ∈ �. (1.2)

Here throughout the paper, ‖ · ‖ denotes the Euclidean norm. Obviously, (1.1) and (1.2) are equiva-
lent if problem (1.1) possesses a solution. In the optimization algorithms it is sometimes helpful to
include an affine scaling matrix for the variables which is invertible in most cases, called an affine
scaling projection. The idea of combining the inexact generalized Newton method and backtracking
interior line search technique motivates to introduce the affine scaling matrix of interior point to gen-
erate the inexact generalized Newton method which switches to strict interior feasibility by line search
backtracking technique. At each iteration, most modern global fit within determining an initial trial
step and testing the trial step to determine whether it gives adequate progress toward a solution, the
affine scaling interior point should switch to strict interior feasibility by line search backtracking inte-
rior technique. For most versions for solving smooth equations, these approaches only rather restrictive
guarantees of global convergence have only been based on the line search procedure such as Armijo
rule, damped Newton methods [9]. Trial steps are determined in a variety ways to enforce a monotone
decrease of the merit function at each step. Nonmonotone technique is developed to combine with, respec-
tively, line search technique and trust region strategy for solving unconstrained optimization in [10,6].
The nonmonotone idea also motivates the study of inexact generalized Newton methods in association
with nonmonotone interior backtracking line search technique for approximating zeros of the semis-
mooth equations (1.1). In this paper, we introduce the affine scaling matrix to generate affine scaling
inexact generalized Newton method in association with two criterions of nonmonotone backtracking
line search and strict interior feasibility accepting step for solving the bound-constrained semismooth
equations (1.1).

In order to describe and design the algorithms for solving the semismooth equations (1.1), we first
introduce the squared Euclidean norm as the merit function to quadratic model of the systems (1.1) and
state the nonmonotone affine scaling inexact generalized Newton algorithm with backtracking interior
point technique for solving the semismooth equations in the next section. In Section 3, we prove re-
sults of the weak and strong global convergence of the proposed algorithm. We characterize the order
of local convergence of the affine scaling inexact generalized Newton method in terms of the rates of
the relative residuals based on convergence behavior of affine scaling matrix and indicate how forcing
sequence influences the rapid rate of convergence and details of this under some reasonable conditions
are in Section 4. Finally, applications of the algorithm to various nonsmooth bound-constrained semi-
smooth equations are discussed and the affine scaling inexact generalized Newton step is implemented
by affine scaling trust region approach in Section 5. As will be shown in [18], we rewrite the following
notations.

Notations: Given a set X ⊂ Rn. S0(X,Rn) denotes the set of all semismooth functions f : Rn ⊃ X →
Rn.Sp(X,Rn), 0 < p�1, is the set of all p-order semismooth functions. We write f ′(x; ·) : Rn → Rm

for the directional derivative, ∇f (x) ∈ Rm×n for the Jacobian, �Bf (x) ⊂ Rm×n for the B-subdifferential,
and �f (x) ⊂ Rm×n for Clarke’s generalized Jacobian of the function f : Rn ⊃ X → Rm at the point
x ∈ X (in case the respective objects exist). ∇f (x) denotes the gradient of the differentiable, real-valued
function f at x.
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2. Algorithm

In this section, we describe and design our affine scaling inexact generalized Newton method in
association with nonmonotone interior backtracking technique for approximating a solution of the bound-
constrained nonlinear semismooth minimization (1.2) transformed by the bound-constrained semismooth
equations (1.1) and present an interior point backtracking technique which enforces the variable generating
strictly feasible interior point approximations to the solution. Nonsmooth analysis is an essential tool for
the design of effective numerical methods for solving the bound-constrained semismooth equations (1.1)
and for the development of the supporting convergence theory. In this section, for convenience, we collect
first concepts about nonsmooth analysis and we first assume that the function H to be considered is locally
Lipschizian. A function H : X ⊂ Rn → Rn is said to be B-differentiable at a point x if it is directional
differentiable at x and

lim
d→0

H(x + d) − H(x) − H ′(x; d)

‖d‖ = 0. (2.1)

We may write the equation as

H(x + d) = H(x) + H ′(x; d) + o(‖d‖).
In a finite-dimensional Euclidean space Rn, Shapiro [15] showed that a locally Lipschizian function H
is B-differentiable at x if and only if it is directional differentiable at x. For such function H is locally
Lipschizian, Rademacher’s theorem implies that H is almost everywhere F-differentiable. Let the set of
points where H is F-differentiable be denoted DH . Then for any x ∈ Rn the generalized subdifferential
of H at x in the sense of Clarke [3] is

�H(x) = conv {lim ∇H(xj ) : xj → x, xj ∈ DH }, (2.2)

which is a nonempty convex compact set. Considered as a set-valued mapping, �H is locally bounded
and upper semicontinuous. We call �BH(x) the B-subdifferential of H at x. This concept was introduced
in [12], where an explanation was also given for its introduction.

For x, d ∈ Rn with d �= 0 we say that y tends to x in the direction d, denoted by y→dx, if
y → x, y �= x, and y−x

‖y−x‖ → d
‖d‖ . We say that H is semismooth at x if H is locally Lipschizian there

and if any d ∈ Rn with d �= 0

lim
y→dx

{V d |V ∈ �H(d)} (2.3)

exists. If H is semismooth at x, then H must be directionally differentiable (B-differentiable) at x and
H ′(x; d) is equal to the above limit for any d �= 0. If H is semismooth at all points in a given set, we say
that H is semismooth in this set. In [14], Qi and Sun gave the following two lemmas.

Lemma 2.1. Suppose that H : X ⊆ Rn → Rm is directionally differentiable at a neighborhood of x.
Then

(1) H ′(x; ·) is Lipschizian;
(2) for any d, there exists a V ∈ �H(x) such that H ′(x; d) = V d.
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Suppose further that H is B-differentiable at a neighborhood of x. We say that the directional derivative
H ′(·; ·) is semicontinuous at x if, for every � > 0, there exists a neighborhood N of x such that for all
x + d ∈ N, ‖H ′(x + d; d) − H ′(x; d)‖��‖d‖.

Lemma 2.2. Suppose that H : Rn → Rn is directionally differentiable at a neighborhood of x. The
following statements are equivalent:

(1) H is semismooth at x;
(2) H ′(·; ·) is semicontinuous at x;
(3) for any V ∈ �H(x + d), d → 0, V d − H ′(x; d) = o(‖d‖);
(4)

lim
x+d∈DH ,d→0

H ′(x + d; d) − H ′(x; d)

‖d‖ = 0.

If for any V ∈ �H(x + d), d → 0,

V d − H ′(x; d) = O(‖d‖1+p), (2.4)

where 0 < p�1, then we call H p-order semismooth at x. It is clear that p-order semismoothness (0 < p�1)

implies semismoothness.
In [3], Clarke gave that for any x, y ∈ Rn,

H(y) − H(x) ∈ conv �H([x, y])(y − x), (2.5)

where the right-hand side denotes the convex hull of all points of form V (y − x) with V ∈ �H(u) for
some point u in [x, y]. By Lemma 2.2(3) and (2.5), if H is semismooth at x, then for any d → 0,

H(x + d) − H(x) − H ′(x; d) = o(‖d‖). (2.6)

Based on the semismooth relaxation of Hölder-continuous differentiability can be established. Let
0 < p�1. The H is p-order semismooth at x ∈ X if H is locally Lipschitz at x, H ′(x; ·) exists, then
for any d → 0,

H(x + d) − H(x) − H ′(x; d) = O(‖d‖1+p). (2.7)

It is known (see [12, Proposition 1]) that semismoothness of H at x implies that

sup
V ∈�H(x+d)

{H(x + d) − H(x) − V d} = o(‖d‖). (2.8)

In the strongly p-order semismooth case at x, one has that

sup
V ∈�H(x+d)

{H(x + d) − H(x) − V d} = O(‖d‖1+p). (2.9)

By Sp(X,Rm) we denote the set of all functions H : X → Rm that are p-order semismooth on X. The
following is obvious.

Lemma 2.3. If H is continuously differentiable in a neighborhood of x ∈ X (with p-Hölder continuous
derivative, 0 < p�1), then f is (p-order) semismooth at x and �H(x) = �BH(x) = {∇H(x)}.
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The following regularity property is essential for fast local convergence of generalized Newton-like
methods. We say that H is BD-regular at x ∈ X if all the elements in �BH(x) are n × n nonsingular
matrices.

Lemma 2.4 (see Pang and Qi [12, Proposition 3]). Let x ∈ X be a BD-regular for H. Then there exist
ε > 0 and � > 0 such that all V ∈ �BH(y), ‖y − x‖�ε are nonsingular with ‖V −1‖��. If, in addition,
H is semismooth at x, then there exist � > 0 and � > 0 such that

‖H(y) − H(x)‖��‖y − x‖ (2.10)

for all y ∈ Rn, ‖y − x‖��.

As motivated above, a classical algorithm for solving the problem (1.1) will be based on the reformu-
lation (1.2). Optimality conditions refer to the continuous differentiability of the merit function h which
was established by Ulbrich and found from Lemma 4.2 in [18].

Lemma 2.5. Assume that the function H : Rn ⊃ X → Rn is semismooth or, stronger, p-order semis-
mooth, 0 < p�1, then the merit function 1

2‖H(x)‖2 is continuously differentiable on X with gradient
∇h(x) = V TH(x), where V ∈ �H(x) is arbitrary.

As motivated above, a classical algorithm for solving the problem (1.1) will be based on the reformu-
lation (1.2). Ignoring primal and dual feasibility of the systems (1.2), the first-order necessary conditions
for x∗ to be a local minimizer and

(g∗)i = 0 if li < (x∗)i < ui,

(g∗)i �0 if (x∗)i = li ,

(g∗)i �0 if (x∗)i = ui,

where g(x)
def= ∇h(x) = V TH(x), with arbitrary V ∈ �H(x), and (g∗)i , (x∗)i are the ith component

of g∗ and x∗, respectively. The scaling matrix Dk = D(xk) arises naturally from examining the first-
order necessary conditions for the bound-constrained semismooth minimization (1.2) transformed by the
bound-constrained problem (1.1), where D(x) is the diagonal scaling matrix such that

D(x)
def= diag{|�1(x)|−1/2, . . . , |�n(x)|−1/2} (2.11)

and the ith component of vector �(x) defined componentwise as follows

�i(x)
def=

⎧⎪⎨⎪⎩
xi − ui if gi < 0 and ui < + ∞,

xi − li if gi �0 and li > − ∞,

−1 if gi < 0 and ui = +∞,

1 if gi �0 and li = −∞
(2.12)

here gi is the ith component of vector g(x). We remark that, even though D(x) may be undefined on the
boundary of �, D(x)−1 can be extended continuously to it. We will denote this extension as a convention
by D(x)−1 for all x ∈ �.

Definition 2.5 (see Coleman and Li [4]). A point x ∈ � is nondegenerate if, for each index i,

gi(x) = 0 
⇒ li < xi < ui . (2.13)

The problem (1.2) is nondegenerate if (2.13) holds for every x ∈ �.
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A classical algorithm for solving the semismooth equations (1.1) is exact generalized Newton-like
method when � is Rn, i.e., unconstrained semismooth equations as follows.

2.1. The exact generalized Newton method

Let x0 be given. For k = 0 step 1 until convergence do (+∞):
Find the step sk which satisfies

Mksk = −Hk , (2.14)

where Mk is an approximation to Vk ∈ �H(xk) or Mk = Vk ∈ �H(xk) (see [7,8]).
Set xk+1 = x + sk .
The process is exact generalized Newton method if Mk = Vk ∈ �H(xk), and it represents an exact

generalized Newton-like method if Mk is an approximation to Vk ∈ �H(xk). Computing the exact solution
can be expensive if n is large and may not be justified when xk is far from a solution. Thus, in [5] iterative
processes of the following general form were led to the following algorithm, called inexact generalized
Newton method:

2.2. The inexact generalized Newton method

Let x0 be given. For k = 0 step 1 until convergence do (+∞):
Find some step sk which satisfies

‖H(xk) + Vksk‖��k‖H(xk)‖. (2.15)

Set xk+1 = x + sk . Here Vk ∈ �H(xk) and �k ∈ [0, 1) is a sequence of forcing terms.
Generally, the global convergence of the methods is obtained by augmenting the inexact generalized

Newton condition with a sufficient monotone decrease condition on the merit function h(x)
def= 1

2‖H(x)‖2
2

introduced by Brown and Saad in [2] for solving the unconstrained smooth equations (1.1) wherein step
length �k of sk in (2.15) by using the Armijo–Goldstein rule, must satisfy

h(xk + �ksk)�h(xk) + 	�k∇h(xk)
Tsk , (2.16)

where 	 ∈ (0, 1) and ∇h(xk) = V T
k H(xk), Vk = ∇H(xk) when H is continuously differentiable in a

neighborhood of xk .
Recently, Bellavia et al. in [1] presented the affine scaling double trust-region approach scheme for

solving the constrained smooth nonlinear equations (1.1). The basic idea is based on the trust region
subproblem

min 
k(d)
def= 1

2‖∇Hkd + Hk‖2 = 1
2‖Hk‖2 + HT

k ∇Hkd + 1
2dT(∇HT

k ∇Hk)d

s.t.‖Dkd‖��k , (2.17)

where �k is the trust region radius, and 
k(d) is trusted to be an adequate representation of the merit

function h(x)
def= 1

2‖H(x)‖2.
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In this paper, we set also the Euclidean norm as the merit function h(x)
def= 1

2‖H(x)‖2
2 with the scaling

invertible matrix D(x) for x where set g(x)
def= ∇h(x)=V TH(x), and V ∈ �H(x) since Lemma 2.5 holds.

In kth iteration of our algorithm, relaxing the acceptability conditions on the trial step sk , we suggest to
use the nonmonotone technique instead of monotone technique. The idea of affine scaling transformation
motivates the study of inexact generalized Newton methods in association with nonmonotone interior
backtracking line search technique for approximating zeros of the bounded-constrained semismooth
equations (1.1).

Now, we describe an affine scaling inexact generalized Newton algorithm with nonmonotonic strick
interior feasible backtracking line search technique for solving semismooth systems (1.1).

2.3. Algorithm (nonmonotone backtracking affine scaling inexact generalized Newton algorithm)

Given positive integer M, m(0) = 0 and the starting point x0 ∈ int(�).
For k = 0 step 1 until ∞ (if ‖D−1

k gk‖ = ‖D−1
k (V T

k Hk)‖�ε, where ε is a given suitable small quantity
and Vk ∈ �H(xk)) stop with the approximate solution xk do:

Given Dk an invertible matrix as affine scaling transformation for each k. Given � ∈ (0, 1) and
	 ∈ (0, 1

2 ). Find some �k ∈ (0, 1), Dk an invertible matrix as affine scaling transformation for each k and
ŝk that satisfy

‖H(xk) + VkD
−1
k ŝk‖2 ��k‖H(xk)‖2 (2.18)

and set

sk = D−1
k ŝk (2.19)

and then choose �k = 1, �, �2, . . . until the following inequality is satisfied

h(xk + �ksk)�h(xl(k)) + �k	∇h(xk)
Tsk , (2.20)

with xk + �ksk ∈ �, (2.21)

where ∇h(xk) = V T
k H(xk) with Vk ∈ �H(xk), and h(xl(k)) = max0�j �m(k) {h(xk−j )}, with the non-

monotone index function 0�m(k)� min{m(k − 1) + 1, M}, k�1.
Further, set

pk
def=

{
�ksk if xk + �ksk ∈ int(�),


k�ksk otherwise,

where 
k ∈ (
l , 1], for some 0 < 
l < 1 and 
k − 1 = O(‖sk‖) and then set

xk+1 = xk + pk . (2.22)

Remark 1. Vk can be updated by updating formula for Clarke’s generalized subdifferential and other
updating generalized subdifferential approaching formula which can avoid to any computing of the
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generalized Jacobian of H at point xk . When Dk = I and � = Rn, the affine scaling inexact generalized
Newton-like algorithm is the usual inexact generalized Newton method for solving unconstrained smooth
equations (1.1) if H(x) is smooth. It is easy to see that the global affine scaling inexact Newton-like
algorithm with the nonmonotone technique is the usual global affine scaling inexact quasi-Newton method
when M = 0. It is clear to see that k − m(k)� l(k)�k.

Remark 2. The scalar �k given in (2.21), denotes the step size along the direction sk to the boundary on
the variables l�xk + �ksk �u, that is,

�k
def= min

{
max

{
li − (xk)i

(sk)i
,
ui − (xk)i

(sk)i

}
, i = 1, 2, . . . , n

}
, (2.23)

where li , ui, (xk)i and (sk)i are the ith components of l, u, xk and sk , respectively.

3. Convergence analysis

Throughout this section we assume that H : X ⊂ Rn → Rn is semismooth, or stronger, p-order
semismooth. Given x0 ∈ � ⊂ Rn, the algorithm generates a sequence {xk} ⊂ � ⊂ Rn. In our analysis,
we denote the level set of h by

L(x0) = {x ∈ Rn |h(x)�h(x0), l�x�u}.

We first require the definition of semismoothness as follows.

Assumption A1. Sequence {xk} ⊂ � generated by the algorithm is contained in a compact set L(x0)

on Rn.

Assumption A2. The function H : Rn ⊃ X → Rn is semismooth or, stronger, p-order semismooth,
0 < p�1.

Assumption A3. Each component function Hi of H is continuously differentiable on X/H−1
i (0).

In order to discuss the global convergence property of the proposed algorithm, we make the following
assumptions in this section which are commonly used in convergence analysis of most methods for solving
the bound-constrained semismooth minimization (1.2) reformulated by the bound-constrained systems
(1.1). As will be shown in [18], the above assumptions are not based directly on Assumption A3 but on
the—in connection with Assumption A3—weaker assumption.

Assumption A3′. The function h : X → R, h(x)
def= 1

2‖H(x)‖2 is continuously differentiable.

In particular, Assumption A3 is more concrete and easier to verify than Assumption A3′ and thus
decide to choose Assumptions A1–A3.
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Assumption A4. There exist some positive constants �V and �D such that

‖V ‖��V , ∀V ∈ �H(x), ‖D(x)−1‖��D, for all x ∈ L(x0).

In kth iteration, to guarantee that the current iterate will make progress towards the solution in one
step of the proposed algorithm we must know how there is the affine scaling interior inexact generalized
Newton step ŝk satisfying (2.18).

Lemma 3.1. If there exists ŝk satisfying (2.18) when ‖D−1
k gk‖=‖D−1

k (V T
k Hk)‖=0 where Vk ∈ �H(xk),

then ‖H(xk)‖2 = 0. Further, if Vk ∈ �H(xk) is nonsingular, then the proposed algorithm will generate
the inexact generalized Newton step ŝk only if ŝk = 0 satisfies (2.18).

Proof. If ŝk satisfies the inequality (2.18) when ‖D−1
k g(xk)‖ = ‖D−1

k (V T
k Hk)‖ = 0, squaring Euclidean

norm to two sides of the inequality (2.18), we gave

‖H(xk)‖2
2 + 2[D−1

k g(xk)]T̂sk + ‖VkD
−1
k ŝk‖2

2 = ‖H(xk) + VkD
−1
k ŝk‖2

2 ��2
k‖H(xk)‖2

2, (3.1)

which implies that noting �k ∈ (0, 1) and D−1
k gk = 0,

0�‖VkD
−1
k ŝk‖2

2 � − (1 − �2
k)‖H(xk)‖2

2 �0.

So, ‖H(xk)‖2 = 0. Furthermore, that D−1
k and Vk ∈ �H(xk) are nonsingular means ŝk = 0. �

Lemma 3.2. Assume that there exists an s̄k such that satisfies Vk ∈ �H(xk)and ‖H(xk) + VkD
−1
k s̄k‖ <

‖H(xk)‖. Then there exists �min ∈ (0, 1) such that, for any �k ∈ (�min, 1), there is an ŝk such that (2.18)
holds.

Proof. Clearly H(xk) �= 0 and hence s̄k �= 0. Set

�min
def= ‖H(xk) + VkD

−1
k s̄k‖

‖H(xk)‖ . (3.2)

For any �k ∈ (�min, 1), let ŝk ≡ 1−�k

1−�min
s̄k . Since the norm function is convex, we have that

‖H(xk) + VkD
−1
k ŝk‖�

�k − �min

1 − �min
‖H(xk)‖ + 1 − �k

1 − �min
‖H(xk) + VkD

−1
k s̄k‖

= �k − �min

1 − �min
‖H(xk)‖ + 1 − �k

1 − �min
�min‖H(xk)‖

= �k‖H(xk)‖. (3.3)

So, Lemma 3.2 does. �

The following lemma show the relation between the gradient gk = ∇hk = V T
k Hk of the objective

function and the step sk generated by the proposed algorithm. We can see from the lemma how the affine
scaling interior inexact generalized Newton steps ŝk and sk are a descent direction for h at the current
approximation xk .
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Lemma 3.3. Let xk ∈ X, D−1
k be the invertible matrix given in (2.11)–(2.12) and ŝk satisfies (2.18), then

sk is descent direction for h at xk , i.e.,

−[D−1
k ∇h(xk)]T̂sk = −∇h(xk)

Tsk �(1 − �k)‖H(xk)‖2
2 �0, (3.4)

|[D−1
k ∇h(xk)]T̂sk|

‖̂sk‖2
= |∇h(xk)

Tsk|
‖̂sk‖2

�
1 − �k

(1 + �k)�k�k

‖D−1
k ∇h(xk)‖�0, (3.5)

where �k
def= cond2(Vk)

def= ‖V −1
k ‖ · ‖Vk‖ and �k

def= cond2(Dk)
def= ‖D−1

k ‖ · ‖Dk‖ represent the Euclidean
condition numbers of the matric Vk and Dk , respectively, with Vk ∈ �H(xk), and �k ∈ (0, 1) given
in (2.18).

Proof. Let rk be the affine scaling residual associated with ŝk so that H(xk) + VkD
−1
k ŝk = rk , where

Vk ∈ �H(xk). From

∇h(xk)
Tsk = H(xk)

TVkD
−1
k ŝk = H(xk)

T[rk − H(xk)], (3.6)

hence, taking the norm in the right-hand side of (3.6), we have that

∇h(xk)
Tsk �‖H(xk)‖ · ‖rk‖ − ‖H(xk)‖2

2 � − (1 − �k)‖H(xk)‖2
2. (3.7)

So, noting [D−1
k ∇h(xk)]T̂sk = ∇h(xk)

Tsk , for �k ∈ (0, 1), the conclusion (3.4) of the lemma is true.
Clearly, D−1

k V T
k H(xk) �= 0 and hence ŝk �= 0. Next, VkD

−1
k ŝk = rk − H(xk). Thus, ŝk =

DkV
−1
k [rk − H(xk)], taking the norm, we have

‖̂sk‖�‖Dk‖‖V −1
k ‖(‖rk‖ + ‖H(xk)‖)�(1 + �k)‖Dk‖‖V −1

k ‖2 · ‖H(xk)‖2. (3.8)

Combining (3.7) with (3.8), we have that

|∇h(xk)
Tsk|

‖̂sk‖2
�

(1 − �k)‖H(xk)‖2
2

(1 + �k)‖Dk‖‖V −1
k ‖2 · ‖H(xk)‖2

= (1 − �k)‖H(xk)‖2

(1 + �k)‖Dk‖‖V −1
k ‖2

(3.9)

and hence as a result, using the fact that ‖D−1
k ∇h(xk)‖2 �‖D−1

k ‖‖H(xk)‖2‖Vk‖2, we get

|∇h(xk)
Tsk|

‖D−1
k ∇h(xk)‖2‖̂sk‖2

�
(1 − �k)‖H(xk)‖2

(1 + �k)(‖Dk‖‖D−1
k ‖)‖H(xk)‖2(‖Vk‖2‖V −1

k ‖2)
�

1 − �k

(1 + �k)�k�k

,

where �k = cond2(Vk) and �k = cond2(Dk). So, we have that the conclusions of the lemma is true. �

Lemma 3.4. Let 	 ∈ (0, 1) and sk be proposed by (2.18). Assume that Assumptions A1–A4 hold, and there
exist � ∈ (0, 1), � and � such that �k ��, �k �� and �k ��. If ‖D−1

k gk‖ �= 0 then the proposed algorithm
will produce an iterate xk+1 = xk + �ksk in a finite number of backtracking steps in (2.20)–(2.21).

Proof. Since ‖D−1
k g(xk)‖ �= 0, by continuity there exist � > 0 and ε > 0 such that ‖D(x)−1g(x)‖�ε for

all x with ‖xk −x‖��. It can be clearly seen that �k will satisfy �k ��k in a finite number of backtracking
reductions where �k given in (2.23). Using the mean value theorem, we have that with 0�ϑk �1, the
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following inequality holds

h(xk + �ksk) = h(xk) + 	�k∇h(xk)
Tsk + (1 − 	)�k∇h(xk)

Tsk

+ �k[∇h(xk + ϑk�ksk)
Tsk − ∇h(xk)

Tsk]
= h(xk) + 	�k∇h(xk)

Tsk + �k[(1 − 	)∇h(xk)
Tsk + �k], (3.10)

where for convenience we have set �k
def=[∇h(xk + ϑk�ksk) − ∇h(xk)]Tsk . By the Assumption A4, there

exists a constant �D > 0 such that ‖D(x)−1‖��D, ∀x ∈ L(x0) and there exist � and � such that �k �� < 1
and �k ��, �k ��, ∀k. Since ∇h(x) is continuous, there exists sufficiently small �k when ‖ϑk�ksk‖��′
such that

‖∇h(xk + ϑk�ksk) − ∇h(xk)‖�(1 − 	)
1 − �

(1 + �)���D

ε.

Note that from the assumptions we have

|�k| = |[∇h(xk + 
k�ksk) − ∇h(xk)]Tsk|� (1 − 	)(1 − �)ε

(1 + �)���D

‖sk‖�
(1 − 	)(1 − �)ε

(1 + �)��
‖̂sk‖.

Since (3.5) means ∇h(xk)
Tsk � − 1−�

(1+�)��ε‖̂sk‖, we have that after a finite number of reductions, the last
term in brackets in the right-hand side of (3.10) will become negative and the corresponding �k will be
acceptable, that is, we have that in a finite number of backtracking steps, �k must satisfy

h(xk + �ksk)�h(xk) + 	�k∇h(xk)
Tsk .

Since h(xk)�h(xl(k)), the conclusion of the lemma holds. �

In this section, we are now ready to state one of our main results of the proposed algorithm.

Theorem 3.5. Let {xk} ⊂ � ⊂ Rn be a sequence generated by the proposed algorithm. Assume that
Assumptions A1–A4 hold and there exist �, � and � such that �k �� < 1, �k �� and �k ��. If �k given in
(2.21) is bounded away from zero as sk → 0, then

lim inf
k→∞ ‖D−1

k gk‖ = lim inf
k→∞ ‖D−1

k V T
k Hk‖ = 0, (3.11)

where Vk ∈ �H(xk).

Proof. According to the acceptance rule (2.20), we have that by sk being a descent direction

h(xl(k)) − h(xk + �ksk)� − �k	∇h(xk)
Tsk = 	[D−1

k V T
k Hk]T(Dksk), (3.12)

where Vk ∈ �H(xk). Taking into account that m(k + 1)�m(k) + 1, and h(xk+1)�h(xl(k)), we have
h(xl(k+1))� max{h(xl(k)), h(xk+1)} = h(xl(k)). This means that the sequence {h(xl(k))} is nonincreasing
for all k, and therefore {h(xl(k))} is convergent.
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Since sk is a descent direction |∇h(xk)
Tsk| = −∇h(xk)

Tsk , and �k ��, �k ��, 1 − �k �1 − � and hence
1 + �k �1 + � for all k. By (2.20) and (3.5), for all k > M ,

h(xl(k)) = h(xl(k)−1 + �l(k)−1sl(k)−1)

� max
0�j �m(l(k)−1)

{h(xl(k)−j−1)} + �l(k)−1	∇h(xl(k)−1)
Tsl(k)−1

� max
0�j �m(l(k)−1)

{h(xl(k)−j−1)}

− �l(k)−1	
1 − �

(1 + �)��
‖D−1

l(k)−1∇h(xl(k)−1)‖2‖̂sl(k)−1‖2. (3.13)

If the conclusion of the theorem is not true, then there exists some ε > 0 such that

‖D−1
k ∇h(xk)‖2 �ε, k = 1, 2, . . . . (3.14)

Therefore, we have that

h(xl(k))�h(xl(l(k)−1)) − �l(k)−1	ε
1 − �

(1 + �)��
‖̂sl(k)−1‖2. (3.15)

As {h(xl(k))} is convergent, we obtain from (3.15) that

lim
k→∞ �l(k)−1 ‖̂sl(k)−1‖2 = 0.

This means that either

lim inf
k→∞ �l(k)−1 = 0, (3.16)

or

lim inf
k→∞ ‖̂sl(k)−1‖ = 0. (3.17)

If (3.17) holds, following by induction way used in [10], it can be derived that

lim
k→∞ h(xl(k)) = lim

k→∞ h(xk). (3.18)

By the rule for accepting the step �ksk ,

h(xk+1) − h(xl(k))�	�k∇h(xk)
Tsk �	ε

1 − �

(1 + �)��
�k ‖̂sk‖2. (3.19)

This means

lim
k→∞ �k ‖̂sk‖2 = 0,

which implies that either

lim
k→∞ �k = 0, (3.20)

or

lim inf
k→∞ ‖̂sk‖ = 0. (3.21)
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If above Eq. (3.21) holds, we have that from

lim
k→∞ {‖H(xk) + VkD

−1
k ŝk‖ − �k‖H(xk)‖}�0.

Now, let x∗ be any limit point of {xk}, it means (1−�)‖H(x∗)‖�0. Since 1−� > 0, we have ‖H(x∗)‖=0
which implies ‖D−1∗ ∇h(x∗)‖2 �‖D−1∗ ‖2‖V∗‖2‖H(x∗)‖2 = 0, where V∗ ∈ �H(x∗). The conclusion of
this theorem holds.

Furthermore, if (3.20) holds, then acceptance rule (2.20) means that, for large enough k,

h

(
xk + �k

�
sk

)
− h(xk)�h

(
xk + �k

�
sk

)
− h(xl(k)) > 	

�k

�
∇h(xk)

Tsk .

Since

h

(
xk + �k

�
sk

)
− h(xk) = �k

�
∇h(xk)

Tsk + o

(
�k

�
‖sk‖

)
,

we have

(1 − 	)
�k

�
∇h(xk)

Tsk + o

(
�k

�
‖sk‖

)
�0. (3.22)

Dividing (3.22) by �k

� ‖sk‖ and noting that 1 − 	 > 0 and ∇h(xk)
Tsk �0, we obtain

lim
k→∞

∇h(xk)
Tsk

‖sk‖ = 0. (3.23)

From (3.5) and the assumptions of the theorem, we have that from 1 − � > 0 and ‖sk‖��D ‖̂sk‖,

0� lim
k→∞

∇h(xk)
Tsk

‖sk‖ = lim
k→∞

∇h(xk)
Tsk

‖̂sk‖
‖̂sk‖
‖sk‖ � − 	ε(1 − �)

���D(1 + �)
< 0, (3.24)

which also implies sk → 0 and hence �k given in (2.23) is bounded away from zero by the assumption
of the theorem and limsk→0 
k = 1. Thus acceptance rules (2.20) and (2.21) all mean that {�k} cannot
converges to zero, contradicting (3.20). So, the conclusion of the theorem is true. �

Theorem 3.5 indicates that at least one limit point of {xk} is a stationary point. Now, we shall extend
this theorem to a stronger result.

Theorem 3.6. Assume that the assumptions of Theorem 3.5 hold. Let {xk} be a sequence generated by
the algorithm. Then

lim
k→∞ ‖D−1

k gk‖ = lim
k→∞ ‖D−1

k (V T
k Hk)‖ = 0, (3.25)

where Vk ∈ �H(xk).

Proof. If (3.25) is not true, then we assume that there are an �1∈(0, 1) and a subsequence {‖D−1
mi

∇h(xmi
)‖}

of {‖D−1
k ∇h(xk)‖} such that ‖D−1

mi
∇h(xmi

)‖��1 for all mi, i = 1, 2, . . . . Theorem 3.5 guarantees the
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existence of another subsequence {‖D−1
li

∇h(xli )‖} such that

‖D−1
k ∇h(xk)‖��2, for mi �k < li (3.26)

and

‖D−1
li

∇h(xli )‖��2 (3.27)

for an �2 ∈ (0, �1).
By (3.5), we get

∇h(xk)
Tsk � − 1 − �

(1 + �)��
‖D−1

k ∇h(xk)‖2‖̂sk‖2. (3.28)

Set �̂1
def= 1−�

(1+�)�� . Eqs. (3.5) and (3.28) mean that

h(xl(k))�h(xl(l(k)−1)) − �l(k)−1	�̂1‖D−1
k ∇h(xk)‖2‖̂sk‖2. (3.29)

Similar to the proof of Theorem 3.5, we can also obtain (3.18), i.e.,

lim
k→∞ h(xl(k)) = lim

k→∞ h(xk). (3.30)

By the accepting rule of the step sk ,

h(xk+1) − h(xl(k))�	�k∇h(xk)
Tsk � − �k	�̂1‖D−1

k ∇h(xk)‖2‖̂sk‖2. (3.31)

Eqs. (3.28), (3.30) and (3.31) imply that for mi �k < li ,

lim
k→∞,mi �k<li

�k ‖̂sk‖2 = 0. (3.32)

By the accepting rule of the step �ksk , for large enough i such that mi �k < li , using the mean value
theorem we have the following equality

h(xk + �ksk) − h(xk) = �k[∇h(xk + �k�ksk) − ∇h(xk)]Tsk + �k∇h(xk)
Tsk (3.33)

with �k ∈ (0, 1). Since ∇h(x) is continuous, there exists sufficiently small �k when ‖�ksk‖��′ such that

|[∇h(xk + �k�ksk) − ∇h(xk)]Tsk|� (1 − 	)(1 − �)

(1 + �)���D

ε2‖sk‖.

So, (3.33) implies that by for large i, mi �k < li ,

hk − h(xk + �ksk)

� − �k

(1 − 	)(1 − �)

(1 + �)���D

ε2‖sk‖ + �k

1 − �k

(1 + �k)�k�k

‖D−1
k ∇h(xk)‖‖̂sk‖

� − �k

(1 − 	)(1 − �)

(1 + �)���D

ε2‖sk‖ + �k

1 − �

(1 + �)���D

ε2‖sk‖

= 	(1 − �)

(1 + �)���D

ε2(�k‖sk‖) def= ��k‖sk‖, (3.34)
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where �
def= 	(1−�)

(1+�)���D
ε2. Similarly to prove (3.24), we can also obtain that sk → 0 and hence limsk→0 
k =

1. From ‖xk+1 − xk‖��k‖sk‖, we then deduce from this bound that for i sufficiently large,

‖xmi
− xli‖�

li−1∑
k=mi

‖xk − xk+1‖�
1

�

li−1∑
k=mi

[hk − h(xk + �ksk)] = 1

�
(hmi

− hli ). (3.35)

Therefore, (3.35) implies that hmi
− hli tends to zero as i tends to infinity and hence ‖xmi

− xli‖ tends
to zero as i tends to infinity. Eq. (2.12) implies |(vmi

)j − (vli )j |� |(xmi
)j − (xli )j | → 0, as i tends to

infinity. Consequently,

‖D−1
li

∇h(xli ) − D−1
mi

∇h(xmi
)‖�‖(D−1

mi
− D−1

li
)V T

li
Hli‖ + ‖D−1

mi
(V T

mi
Hmi

− V T
li

Hli )‖.

Finally, from the triangle inequality and continuity of the gradient ∇h(x) = V T(x)H(x) where V (x) ∈
�H(x), we then deduce from this bound tending to zero for i sufficiently large. We thus deduce that
|‖D−1

li
∇h(xli )‖ − ‖D−1

mi
∇h(xmi

)‖| also tends to zero. However, this is impossible because of the defini-
tions of {li} and {mi}, which imply that

|‖D−1
li

∇h(xli )‖ − ‖D−1
mi

∇h(xmi
)‖|�‖D−1

mi
∇h(xmi

)‖ − ‖D−1
li

∇h(xli )‖��1 − �2 > 0.

Hence no subsequence satisfying (3.26) can exist, and the theorem is proved. �

Corollary 3.7. Assume that the assumptions of Theorem 3.5 hold. If there exists a limit point x∗ of the
sequence {xk} generated by the proposed algorithm such that x∗ ∈ int(�) is a BD-regular point of H at
which H is semismooth, then limk→∞ ‖Hk‖ = 0, and all the accumulation point solve the problem (1.1).

Proof. For x∗ ∈ int(�), there exists sufficiently small � ∈ (0, 2] such that the open ball N(x∗, �)
def=

{x | ‖x − x∗‖ < �} ∈ int(�). Since x∗ is a BD-regular point of H, we have that there exist, without loss
of generality � > 0 and � > 0 such that all V ∈ �BH(y), ‖y − x‖�� are nonsingular with ‖V −1‖��.
Also , let {xkj

} be subsequence such that xkj
→ x∗ and j0 be the index such that for k > kj0 , the

sequence {xkj
}belongs to N(x∗, �/2). Assume kj > kj0 . Then |li − (xkj

)i | > �/2 and |ui − (xkj
)i | > �/2

for i = 1, . . . , n, where li , ui and (xkj
)i are the ith components of l, u and xkj

, respectively. Hence,
‖Dkj

‖�
√

2n/� where
√

2/��1. Further, (3.18) means that the sequence {h(xk)} is convergent. Then,
from the following inequality and (3.25)

‖Hkj
‖

�
√

2n/�
�

‖V T
kj

Hkj
‖

‖Dkj
‖ �‖D−1

kj
V T

kj
Hkj

‖ → 0, (3.36)

where Vkj
∈ �H(xkj

) which implies that the corollary is proved. �

Remark. Since x∗ ∈ int(�), we can obtain that there exists � > 0 such that |li − (xkj
)i | > �/2 and

|ui − (xkj
)i | > �/2 for i = 1, . . . , n. So, the step size �k given in (2.23) along the direction sk is bounded

away from zero, furthermore, �k → +∞ as sk → 0.
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4. The local convergence

We now discuss the convergence rate for the proposed algorithm. Defining the generalized Newton
step sN

k satisfies

Vks
N
k = −H(xk), (4.1)

that is, the inexact generalized Newton step sk → sN
k if �k → 0.

Theorem 4.1. Assume that Assumptions A1–A4 and the assumptions of Theorem 3.5 hold. Let x∗ be any
accumulation point of the sequence {xk} generated by the proposed algorithm and x∗ be a BD-regular
point of H at which H is semismooth. Furthermore, if �k → 0, �=cond(D∗) <+∞, �=cond(V∗) <+∞
with V∗ ∈ �H(x∗) and �k given in (2.23) is bounded away from 1 as sN

k → 0, that is,

lim
k→∞ �k

def= min{�k, 1} = 1, (4.2)

�k
def= min

{
max

{
li − (xk)i

(sk)i
,
ui − (xk)i

(sk)i

}
, i = 1, 2, . . . , n

}
, (4.3)

where li , ui, (xk)i and (sk)i are the ith components of l, u, xk and sk , respectively. Then x∗ is a
BD-regular zero solution of H and xk → x∗, the step size �k ≡ 1 for large enough k.

Proof. If H(xk)=0 for some large k, then the residual condition implies ŝk =0. As a result, sk =Dkŝk ≡ 0
for all large enough k and the step size �k ≡ 1. Therefore, without loss of generality we may assume that
D−1

k V T
k H(xk) �= 0. Similar to prove (3.24) in Theorem 3.5, we also have that

lim
k→∞

∇h(xk)
Tsk

‖̂sk‖ = 0. (4.4)

By the continuities of cond(Dk) and cond(Vk), and �k = cond(Dk) → cond(D∗) < + ∞ and �k =
cond(Vk) → cond(V∗) < + ∞, we have that {�k} and {�k} are uniformly bounded from above. Hence,
(4.4) and (3.5) imply that as �k → 0

0 = lim
k→∞

∇h(xk)
Tsk

‖̂sk‖ � lim
k→∞

1 − �k

�k(1 + �k)�k

‖D−1
k ∇h(xk)‖2 = 1

��
‖D−1∗ ∇h(x∗)‖2, (4.5)

which implies D−1∗ V T∗ H(x∗) = D−1∗ ∇h(x∗) = 0. Since x∗ ∈ � is a BD-regular point of H, i.e., D∗ and
V∗ nonsingular, this gives H(x∗) = 0 which means that x∗ ∈ � is a BD-regular zero solution of H.

Further, x∗ is a BD-regular zero of H which H is semismooth, then there exist � > 0 and � > 0 such that

‖H(xk)‖��‖xk − x∗‖ for all ‖xk − x∗‖��.

This gives xk → x∗ ∈ �.
Using Lemma 2.4 again,Vk is also nonsingular and uniformly bounded from above for allVk ∈ �BH(xk)

and all large enough k. By reducing �, if necessary, such that for all k with ‖xk + sk − x∗‖ < �′

‖xk + sk − x∗‖ < �′, ‖xk − x∗‖�� < �′.
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For large enough k, by Vk ∈ �BH(xk) and Dk by nonsingular, we have that by Lemma 2.2,

h(xk + sk) − hk − ∇hT
k sk = 1

2‖Hk + Vksk + o(‖sk‖)‖2 − 1
2‖Hk‖2 − ∇hT

k sk

= 1
2‖VkD

−1
k ŝk‖2 + o(‖sk‖2)

� 1
4‖VkD

−1
k ŝk‖2. (4.6)

This gives

h(xk + sk)�h(xl(k)) + 	∇h(xk)
Tsk + (1

2 − 	)∇h(xk)
Tsk

+ 1
2 (∇h(xk)

Tsk + ‖VkD
−1
k ŝk‖2) + o(‖sk‖2). (4.7)

Next, by (3.7)–(3.8), we get

∇h(xk)
Tsk �‖H(xk)‖ · ‖rk‖ − ‖H(xk)‖2

2 � − (1 − �k)‖H(xk)‖2
2, (4.8)

‖sk‖�‖D−1
k ‖‖̂sk‖�(1 + �k)‖D−1

k ‖‖V −1
k ‖‖H(xk)‖2 (4.9)

and

‖VkD
−1
k ŝk‖�‖rk‖2 + ‖H(xk)‖2 �(1 + �k)‖H(xk)‖2.

So, (4.7) can be rewritten as follows

h(xk + sk)�h(xl(k)) + 	∇h(xk)
Tsk + (1

2 − 	)∇h(xk)
Tsk

+ 1
2 (∇h(xk)

Tsk + ‖VkD
−1
k ŝk‖2) + o(‖sk‖2)

�h(xl(k)) + 	∇h(xk)
Tsk

− [(1
2 − 	)(1 − �k) + 1

2 (1 − �k) − 1
2 (1 + �k)

2]‖H(xk)‖2
2 + o(‖sk‖2)

�h(xl(k)) + 	∇h(xk)
Tsk (4.10)

for all large enough k, the last inequality is deduced because the third term in brackets in the right-hand
side of (4.10) will become negative by

(1
2 − 	)(1 − �k) + 1

2 (1 − �k) − 1
2 (1 + �k)

2 → (1
2 − 	), as �k → 0,

and by (4.9), ‖sk‖2 = O(‖H(xk)‖2
2) for the last term. By the above inequality and �k given in (2.23)

is bounded away from 1 as sk → 0 and hence limsk→0 
k = 1, we know that the acceptance rules
(2.20)–(2.21) mean that for large k

xk+1 = xk + sk ,

which implies that for large enough k, the step size �k ≡ 1 and hence the theorem is proved. �

Theorem 4.1 means that the local convergence rate for the proposed algorithm depends on the general-
ized subdifferential of the function at x∗ and the local convergence rate of the step. If the nondegenerate
property of the system (1.2) holds at point x∗, then at the kth iteration for large k, the active set is invari-
able. So, sk becomes the projected generalized Newton step or the projected generalized Newton step,
then the sequence {xk} generated by the algorithm converges to x∗ quadratically or q-superlinearly.



D. Zhu / Journal of Computational and Applied Mathematics 187 (2006) 227–252 245

We now present the characterizations of rate of convergence of the proposed algorithm. If the H is
p-order semismooth at x∗ ∈ �, choosing � > 0 sufficiently small, then we define that

�(x∗, �)
def= sup

y

{
sup

V ∈�H(y)

‖H(y) − H(x∗) − V (y − x∗)‖
‖y − x∗‖

∣∣∣∣∣ y �= x∗; y ∈ N(x∗; �)

}
. (4.11)

By p-order semismooth at x∗ ∈ �, it is clear that �(x∗, �) can be made as small as desired by making �
sufficiently small.

Theorem 4.2. Assume that �k → 0. Suppose that H is locally Lipschizian, and x∗ ∈ � be a BD-regular
zero of H at which H is p-order semismooth. There exists � > 0 such that ‖x0 − x∗‖��, then for each k,
the sequence {xk} generated by

‖H(xk) + VkD
−1
k ŝk‖��k‖H(xk)‖, (4.12)

xk+1 = xk + sk = xk + D−1
k ŝk , (4.13)

converges to x∗. Moreover, the convergence is linear in the sense that there exists � ∈ (0, 1) such that

‖xk+1 − x∗‖��‖xk − x∗‖. (4.14)

Proof. Since H is BD-regular zero at x∗, there are a neighborhood N of x∗ and constants �̄ > 0, � > 0
such that for any y ∈ N and V ∈ �BH(y), V is nonsingular and max{‖V ‖}��, max{‖V −1‖}� �̄. By
�k → 0, there exist sufficiently small � > 0 and sufficiently small �max ∈ (0, 1) such that �k ��max and

�̄[�max(� + �) + �]��. (4.15)

Now, choose � > 0 sufficiently small such that �(x∗, �)�� where �(x∗, �) given in (4.11), and for any
y ∈ N(x∗; �) and V ∈ �BH(y), that is,

‖H(y) − H(x∗) − V (y − x∗)‖��‖y − x∗‖ (4.16)

if ‖y − x∗‖��. By reducing �, if necessary, for all k, from (3) and (4) in Lemma 2.2, we have also that

‖H(y) − H(x∗) − V∗(y − x∗)‖��‖y − x∗‖
for all V∗ ∈ �BH(x∗), if ‖y − x∗‖��.

Assume that ‖x0 − x∗‖��. We prove (4.14) by induction. Note that the induction hypothesis

‖xk − x∗‖��k‖x0 − x∗‖��k���,

so that (4.16) holds with y = xk . Let rk = H(xk) + VkD
−1
k ŝk . Since

xk+1 − x∗ = xk − x∗ + V −1
k [rk − H(xk)]

= V −1
k rk − V −1

k [H(xk) − H(x∗) − Vk(xk − x∗)] (4.17)

taking norms,

‖xk+1 − x∗‖�‖V −1
k ‖ [‖rk‖ + ‖H(xk) − H(x∗) − Vk(xk − x∗)‖]

� �̄ [�k‖H(xk)‖ + �‖xk − x∗‖]. (4.18)
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Since

H(xk) = V∗(xk − x∗) + [H(xk) − H(x∗) − V∗(xk − x∗)]
taking norms,

‖H(xk)‖�‖V∗(xk − x∗)‖ + ‖H(xk) − H(x∗) − V∗(xk − x∗)‖��‖xk − x∗‖ + �‖xk − x∗‖,

using (4.16). Therefore,

‖xk+1 − x∗‖� �̄[�k(� + �)‖xk − x∗‖ + �‖xk − x∗‖]
� �̄[�max(� + �) + �]‖xk − x∗‖��‖xk − x∗‖. (4.19)

The result now follows from the choice of �. �

Theorem 4.3. Suppose that H is locally Lipschizian, semismooth and BD-regular at x∗ which is a
solution of (1.1) and that the sequence {xk} generated by (4.12)–(4.13) converges to x∗. Then xk → x∗
superlinearly if and only if

‖rk‖ = o(‖H(xk)‖) as k → ∞, (4.20)

where rk = H(xk) + VkD
−1
k ŝk . Moreover, if H is p-order semismooth at x∗, then xk → x∗ with order at

least 1 + p if and only if

‖rk‖ = O(‖H(xk)‖1+p) as k → ∞. (4.21)

Proof. Since H is BD-regular zero at x∗, there is a neighborhood N of x∗ and a constant � > 0 such that
for any y ∈ N and V ∈ �BH(y), V is nonsingular and max{‖V ‖, ‖V −1‖}��. By the equation

rk = H(xk) + VkD
−1
k ŝk

= [H(xk) − H(x∗) − Vk(xk − x∗)] + Vk(xk+1 − x∗), (4.22)

we have the first term in the right hand of (4.22) is o(‖xk − x∗‖) since H is semismooth and BD-regular
zero at x∗. Assume that xk → x∗ superlinearly, therefore, we have that any Vk ∈ �BH(xk) is nonsingular
and uniformly bounded,

‖rk‖ = O(‖xk+1 − x∗‖) = o(‖xk − x∗‖) = o(‖H(xk)‖).
On the other hand, since Vk ∈ �BH(xk) is nonsingular and max{‖Vk‖, ‖V −1

k ‖}��, then we have that
(4.22) means

‖xk+1 − x∗‖ = o(‖rk‖) = o(‖H(xk)‖) = o(‖xk − x∗‖) as k → ∞.

If H is p-order semismooth at x∗, then the proof is essentially the same p-order semismooth and

H(xk) − H(x∗) − Vk(xk − x∗) = O(‖xk − x∗‖1+p)

instead of the semismooth of H. The conclusions of Theorem 4.2 hold. �
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The above theorem characterizes the order of the convergence of the inexact generated Newton iterates
in terms of the rate of convergence of the relative residuals. Let x∗ ∈ � be a BD-regular zero of H at
which H is p-order semismooth, then there exist � > 0 and �′ > � > 0 such that

�‖xk − x∗‖�‖H(xk)‖��′‖xk − x∗‖
for all ‖xk − x∗‖��. Therefore,

�′

1 − �k

= �′‖xk − x∗‖
‖xk − x∗‖ − ‖xk+1 − x∗‖ �

‖H(xk)‖
‖xk+1 − xk‖

�
�‖xk − x∗‖

‖xk+1 − x∗‖ + ‖xk − x∗‖ = �

1 + �k

,

where �k = ‖xk+1−x∗‖
‖xk−x∗‖ . Then an equivalent result in terms of the steps {sk} for generalized-Newton methods

is expressed in our notion that xk → x∗ superlinear if and only if

‖rk‖ = o(‖sk‖) as k → ∞, (4.23)

where rk = H(xk) + VkD
−1
k ŝk , and xk → x∗ with order at least 1 + p if and only if

‖rk‖ = O(‖sk‖1+p) as k → ∞, (4.24)

proved H is p-order semismooth at x∗. It should be noted that these conditions were not originally stated
in terms of the residuals rk and that, since they are not scale-invariant, they do not suggest a natural
criterion for when to accept an approximate solution to the Newton equations.

If the condition

‖H(xk) + VkD
−1
k ŝk‖��k‖H(xk)‖

is replaced by the stronger condition which the forcing sequence {�k} is p-order for {‖H(xk)‖}
‖H(xk) + VkD

−1
k ŝk‖��‖H(xk)‖1+p, ∀k = 0, 1, . . . , (4.25)

that is, �k = �‖H(xk)‖p, where � is any nonnegative constant, then one can show 1 + p order superlinear
convergence of the iterates {xk}.
Theorem 4.4. Suppose that H is locally Lipschizian, p-order semismooth and BD-regular at x∗ which is a
solution of (1.1). Assume also that in a neighborhoodNof x∗, for any y ∈ Nand V ∈ �BH(y)∪�BH(x∗),
the following inequality holds

‖H(y) − H(x∗) − V (y − x∗)‖��‖y − x∗‖1+p, (4.26)

where � is called p-order semismooth constant at x∗. Then there exists an � ∈ (0, 1] such that ‖x0−x∗‖��,
the sequence {xk} generated by the forcing sequence (4.25) superlinearly converges to x∗ with order
at least 1 + p in the sense that

‖xk+1 − x∗‖�	[� + �(	′ + ��p)1+p]‖xk − x∗‖1+p, ∀k = 0, 1, . . . , (4.27)

where 	 = max{‖V −1‖|V ∈ �H(x∗)} and 	′ = max{‖V ‖ | V ∈ �H(x∗)}. Moreover,

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖1+p

�	(� + �(	′)1+p). (4.28)
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Proof. Since H is BD-regular zero solution of the problem (1.1) at x∗ and (4.26) holds with p-order
semismooth constant �, we now choose � ∈ (0, 1] sufficiently small that for any y ∈ N(x∗, �) ≡
{y | ‖y − x∗‖��} and V ∈ �BH(y) and V∗ ∈ �BH(x∗),

‖H(y) − H(x∗) − V (y − x∗)‖��‖y − x∗‖1+p,

‖H(y) − H(x∗) − V∗(y − x∗)‖��‖y − x∗‖1+p.

Since H is BD-regular zero solution of the problem (1.1) at x∗, � > 0 is chosen sufficiently small such
that the semismooth constant � and constants 	, 	′ satisfy

	(� + �(	′ + ��p)1+p)�p � 1
2 . (4.29)

Assume that ‖x0 − x∗‖��. We prove by induction on k that (4.27) holds at each step and that

‖xk+1 − x∗‖� 1
2 ‖xk − x∗‖1+p, ∀k = 0, 1, 2, . . . ,

giving xk+1 ∈ N(x∗, �).
From ‖x0 − x∗‖�� and ‖H(x0) + V0D

−1
0 ŝ0‖��‖H(x0)‖1+p, it follows that, defining rk = H(xk) +

VkD
−1
k ŝk ,

x1 − x∗ = x0 − x∗ + V −1
0 [r0 − H(x0)]

= V −1
0 r0 − V −1

0 [H(x0) − H(x∗) − V0(x0 − x∗)] (4.30)

and taking norms,

‖x1 − x∗‖�‖V −1
0 ‖ [‖r0‖ + ‖H(x0) − H(x∗) − V0(x0 − x∗)‖ ]

�	 [�‖H(x0)‖1+p + �‖x0 − x∗‖1+p]. (4.31)

Taking y = x0 in (4.26)

‖H(x0) − H(x∗) − V0(x0 − x∗)‖��‖x0 − x∗‖1+p

and

H(x0) = V∗(x0 − x∗) + [H(x0) − H(x∗) − V∗(x0 − x∗)]
taking norms,

‖H(x0)‖�‖V∗(x0 − x∗)‖ + ‖H(x0) − H(x∗) − V∗(x0 − x∗)‖
�(‖V∗‖ + �‖x0 − x∗‖p)‖x0 − x∗‖.

Hence, by (4.31)

‖x1 − x∗‖�[	� + 	�(	′ + ‖x0 − x∗‖p�)1+p]‖x0 − x∗‖1+p

�[	� + 	�(	′ + ��p)1+p]‖x0 − x∗‖1+p. (4.32)
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By (4.31), ‖x1 − x∗‖� 1
2‖x0 − x∗‖��, so that x1 ∈ N(y∗, �). This completes the case k = 0. The proof

of the induction step is identical.
To (4.30), we have from (4.32) that

‖xk+1 − x∗‖�[	� + 	�(	′ + �‖xk − x∗‖)1+p]‖xk − x∗‖1+p, for k = 0, 1, 2, . . . .

Since xk → x∗ as k → ∞, we immediately obtain (4.28). �

The above result gives that the steps {sk} for the inexact generalized Newton iterates can be accepted
in which the order of the convergence of iterates depends on {�k}.

5. Applications

The semismooth equations arise from the reformulation of the following mixed complementarity
problems (MCP). In order to introduce the MCP, it is quite convenient to consider the variational inequality
problem first. We only sketch the idea here and do not state any formal results. For a given function F :
Rn → Rn and a nonempty, closed and convex set � ⊆ Rn, this variational inequality problem consists
in finding a point y ∈ � such that

F(y)T(x − y)�0, ∀x ∈ �
def={x | l�x�u}.

It can be seen that this is equivalent to x ∈ Rn satisfying the following conditions: for every i = 1, . . . , n,

if Fi(y) > 0 then xi = li ,
if Fi(y) < 0 then xi = ui ,
if Fi(y) = 0 then li �xi �ui .

It is well known and easy to see that this variational inequality problem is equivalent to the MCP, that is,
the following nonlinear complementarity problems NCPs subject to bounded constraints on variables:

x�0, F (x)�0, xTF(x) = 0, and

x ∈ �
def={x | l�x�u}, (5.1)

where F : Rn → Rn is assumed to be continuously differentiable and the n-dimensional feasible box
constraint set �. It is easy to see that this mixed complementarity problem is the NCP when � is equal to
the nonnegative orthant, i.e. if �=[0, ∞). The NCP is also a general framework for optimality conditions
of mathematical programs. Hereby, the function � : R2 → R is an NCP-function, i.e. it satisfies

�(a, b) = 0 if and only if a�0, b�0, ab = 0. (5.2)

Probably the most popular NCP-function is the Fischer–Burmeister function which was used to study
various methods for solving the NCPs and related problems (see [17] details)

�(a, b)
def= �FB(a, b)

def=
√

a2 + b2 − a − b, (5.3)
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which is semismooth. In particular, these assumptions hold if F is Lipschitz continuously differentiable
and if �=�FB is chosen. For details on the variety of available NCP-functions, for example, other popular
NCP-functions are min-function

�(a, b)
def= �min(a, b)

def= min{a, b}
and max-function

�(a, b)
def= �+(a, b)

def= a+b+,

where z+
def= max{0, z} for z ∈ R (also, referred to [17]). From this property, the NCP-function given in

(5.2) can readily be recast as the system of semismooth equations

H(x)
def=

⎛⎝H1(x)
...

Hn(x)

⎞⎠ def=
⎛⎝�(x1, F1(x))

...

�(xn, Fn(x))

⎞⎠ = 0. (5.4)

In the sense that x solves (5.1) if and only if x solves (5.4) and x ∈ �. Further, define a merit function
h : Rn → R1 as

h(x)
def= 1

2

n∑
i=1

[�(xi, Fi(x))]2 def= 1

2
‖H(x)‖2

2.

Finally, we discussed an affine scaling trust region approach to the affine scaling inexact generalized
Newton step and hence, the step size �k given in (2.23) along the direction sk is bounded away from zero,
moreover, �k → +∞ as sk → 0. An augmented affine scaling trust region model is based on the local
linear approximation of the squared Euclidean norm of the semismooth systems (1.1) at xk

(Sk) min �k(d̂)
def= 1

2‖VkD
−1
k d̂ + Hk‖2 + 1

2 d̂TCkd̂

s.t.‖d̂‖��k ,

where �k is the trust region radius, Vk ∈ �H(xk) and the diagonal matrix

Ck
def= diag{gk}J �

k (5.5)

suggested by Coleman and Li in [4], where g(x)
def= ∇h(x)=V TH(x) and J �(x) ∈ Rn×n is the Jacobian

matrix of |�(x)| whenever |�(x)| is differentiable. Each diagonal component of the diagonal matrix J �

equals zero or ±1. Subproblem (Sk) is not solved exactly. A rather coarse solution is sufficient to guarantee
basic global convergence.

It is well known (see [16]) that dk = Dkd̂k is a solution to the subproblem (Sk) if and only if dk is a
solution to the following equations of the forms

[D−1
k (V T

k Vk)D
−1
k + Ck + �kI ]d̂k = −D−1

k gk , (5.6)

�k(‖d̂k‖ − �k) = 0, �k �0. (5.7)
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Then there exist � ∈ (0, 1
2 ) and � > 0 such that

�k(d̂) − �k(0)��‖D−1
k gk‖ min

{
�k,

‖D−1
k gk‖
�

}
. (5.8)

As {dk} converges to zero, [diag{gk}J �
k + �kI ] is a positive semidefinite diagonal matrix, and x∗ is

nondegenerate with D−1∗ g∗=0, for any i with (v∗)i=0, (dk)i and (gk)i have the same sign for k sufficiently

large. Hence, if �k given in (2.23) is defined by some (v∗)j = 0 and (g∗)j �= 0, then �k = |(vk)j |
|(dk)j | for k

sufficiently large. Using (5.6),

�k = |(gk)j | + �k

|(gk)j + (V T
k Vkdk)j |

�
|(gk)j | + �k

‖gk + V T
k Vkdk‖∞

. (5.9)

Assume that any limit point of {xk} is nondegenerate, similar to proof of the convergence in [4], then �k

given in (2.21) is bounded away from zero. Furthermore, �k given in (2.23) is bounded away from 1 as
sN
k → 0.

Concluding remark. We have presented a new affine scaling inexact generalized Newton algorithm in
association with nonmonotone interior backtracking line technique for solving systems of semismooth
equations subject to bounds on variables. Important examples of the bounded semismooth equations are
reformulations of NCPs. In particular, the augmented affine scaling trust region algorithm can be used to
solve the inexact generalized Newton steps.
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