JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:168 |
Multi-harmonic modelling of motional magnetic field problems using a hybrid finite element-boundary element discretisation | |
Article; Proceedings Paper | |
Gyselinck, J ; Geuzaine, C ; Dular, P ; Legros, W | |
关键词: harmonic balance; finite element method; boundary element method; hybrid method; magnetic fields; eddy currents; motion; | |
DOI : 10.1016/j.cam.2003.05.024 | |
来源: Elsevier | |
【 摘 要 】
This paper deals with the numerical steady-state analysis of motional magnetic field problems in the frequency domain. An original method for taking into account an arbitrary periodic movement in a two-dimensional or three-dimensional hybrid finite element-boundary element model is proposed. It is elaborated in detail for a general two-dimensional eddy current problem and validated by means of a simple test case. The latter concerns a conducting pendulum that swings back and forth in the magnetic field of a permanent magnet. The time-periodic problem is solved by means of the proposed multi-harmonic method, using both a hybrid model and a finite element model. The obtained waveforms are shown to converge to each other and to those obtained with a time-domain approach. (C) 2003 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2003_05_024.pdf | 356KB | download |