期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:258
An approximation of anisotropic metrics from higher order interpolation error for triangular mesh adaptation
Article
Hecht, Frederic1,2  Kuate, Raphael1,3 
[1] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] Univ Paris Est, IFSTTAR, COSYS, F-77447 Marne La Vallee, France
关键词: Mesh adaptation;    Metrics;    Interpolation error estimates;    Finite elements;    Anisotropy;   
DOI  :  10.1016/j.cam.2013.09.002
来源: Elsevier
PDF
【 摘 要 】

We propose an efficient algorithm for the numerical approximation of metrics, used for anisotropic mesh adaptation on triangular meshes with finite element computations. We derive the metrics from interpolation error estimates expressed in terms of higher order derivatives, for the,P-k-Lagrange finite element, k > 1. Numerical examples of mesh adaptation done using metrics computed with our Algorithm, and derived from higher order derivatives as error estimates, show that we obtain the right directions of anisotropy. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2013_09_002.pdf 1323KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次