期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:230
Error estimates of triangular finite elements under a weak angle condition
Article
Mao, Shipeng1  Shi, Zhongci1 
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China
关键词: Interpolation error estimates;    Bramble-Hilbert lemma;    Maximal angle condition;   
DOI  :  10.1016/j.cam.2008.11.008
来源: Elsevier
PDF
【 摘 要 】

In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A, Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma. (C) 2008 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2008_11_008.pdf 291KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次