期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:230 |
Error estimates of triangular finite elements under a weak angle condition | |
Article | |
Mao, Shipeng1  Shi, Zhongci1  | |
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100190, Peoples R China | |
关键词: Interpolation error estimates; Bramble-Hilbert lemma; Maximal angle condition; | |
DOI : 10.1016/j.cam.2008.11.008 | |
来源: Elsevier | |
【 摘 要 】
In this note, by analyzing the interpolation operator of Girault and Raviart given in [V. Girault, P.A, Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in: Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986] over triangular meshes, we prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma. (C) 2008 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2008_11_008.pdf | 291KB | download |