JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:223 |
A fast and accurate algorithm for computing radial transonic flows | |
Article | |
De Sterck, Hans1  Rostrup, Scott1  Tian, Feng2  | |
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada | |
[2] Natl Ctr Atmospher Res, NASA Postdoctoral Program & High Altitude Observ, Boulder, CO 80307 USA | |
关键词: Compressible gas dynamics; Euler equations; Transonic flow; Dynamical systems; Critical points; Newton method; | |
DOI : 10.1016/j.cam.2008.03.019 | |
来源: Elsevier | |
【 摘 要 】
An efficient algorithm is described for calculating stationary one-dimensional transonic outflow solutions of the compressible Euler equations with gravity and heat source terms. The stationary equations are solved directly by exploiting their dynamical system form. Transonic expansions are the stable manifolds of saddle-point-type critical points, and can be obtained efficiently and accurately by adaptive integration outward from the critical points. The particular transonic solution and critical point that match the inflow boundary conditions are obtained by a two-by-two Newton iteration which allows the critical point to vary within the manifold of possible critical points. The proposed Newton Critical Point (NCP) method typically converges in a small number of Newton steps, and the adaptively calculated solution trajectories are highly accurate. A sample application area for this method is the calculation of transonic hydrodynamic escape flows from extrasolar planets and the early Earth. The method is also illustrated for an example flow problem that models accretion onto a black hole with a shock. (C) 2008 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2008_03_019.pdf | 1054KB | download |