期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:363
An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction
Article
Del Pino, S.1  Labourasse, E.1  Morel, G.1,2 
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] Pierre & Marie Curie Univ, LJLL, 4 Pl Jussieu, F-75005 Paris, France
关键词: Compressible gas dynamics;    Multi-fluid;    Finite volumes;    Unstructured meshes;    Asymptotic preserving;    Arbitrary-Lagrangian-Eulerian (ALE);   
DOI  :  10.1016/j.jcp.2018.02.016
来源: Elsevier
PDF
【 摘 要 】

We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme. (c) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2018_02_016.pdf 3151KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次