期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS | 卷:363 |
An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction | |
Article | |
Del Pino, S.1  Labourasse, E.1  Morel, G.1,2  | |
[1] CEA, DAM, DIF, F-91297 Arpajon, France | |
[2] Pierre & Marie Curie Univ, LJLL, 4 Pl Jussieu, F-75005 Paris, France | |
关键词: Compressible gas dynamics; Multi-fluid; Finite volumes; Unstructured meshes; Asymptotic preserving; Arbitrary-Lagrangian-Eulerian (ALE); | |
DOI : 10.1016/j.jcp.2018.02.016 | |
来源: Elsevier | |
【 摘 要 】
We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme. (c) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jcp_2018_02_016.pdf | 3151KB | download |