JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:233 |
The asymptotic behaviour of recurrence coefficients for orthogonal polynomials with varying exponential weights | |
Article; Proceedings Paper | |
Kuijlaars, A. B. J.1  Tibboel, P. M. J.1  | |
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium | |
关键词: Riemann-Hilbert problems; Recurrence coefficients; Orthogonal polynomials; Steepest descent analysis; | |
DOI : 10.1016/j.cam.2009.02.090 | |
来源: Elsevier | |
【 摘 要 】
We consider orthogonal polynomials {p(n,N)(x)}(n=0)(infinity) on the real line with respect to a weight w(x) = e(-NV(x)) and in particular the asymptotic behaviour of the coefficients a(n,N) and b(n,N) in the three-term recurrence x pi(n,N)(x) = pi(n+1,N)(x) + b(n,N) pi(n,N)(x) + a(n,N) pi(n-1,N)(x). For one-cut regular V we show, using the Deift-Zhou method of steepest descent for Riemann-Hilbert problems, that the diagonal recurrence coefficients a(n,n) and b(n,n) have asymptotic expansions as n -> infinity in powers of 1/n(2) and powers of 1/n, respectively. (C) 2009 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_cam_2009_02_090.pdf | 661KB | download |