期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:233
On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation
Article
Qian, Ai-Lin1,2  Xiong, Xiang-Tuan3  Wu, Yu-Jiang2 
[1] Xianning Univ, Dept Math & Stat, Xianning 437000, Hubei, Peoples R China
[2] Lanzhou Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
[3] NW Normal Univ, Dept Math, Lanzhou 730000, Gansu, Peoples R China
关键词: Ill-posed;    Cauchy problem of Helmholtz equation;    Quasi-reversibility;    Regularization;   
DOI  :  10.1016/j.cam.2009.09.031
来源: Elsevier
PDF
【 摘 要 】

In this paper, we consider the Cauchy problem for the Helmholtz equation in a rectangle, where the Cauchy data is given for y = 0 and boundary data are for x = 0 and x = pi. The solution is sought in the interval 0 < y <= 1. A quasi-reversibility method is applied to formulate regularized solutions which are stably convergent to the exact one with explicit error estimates. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2009_09_031.pdf 610KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次