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1. Introduction

The Helmholtz equation arises in many areas, especially in practical physical applications, such as acoustic, wave
propagation and scattering, vibration of the structure, electromagnetic scattering and so on. Several numerical methods
have been proposed to solve this problem, such as alternating iterative algorithm based on the boundary element method
(BEM) [1], the conjugate gradient method [2], the method of fundamental solutions (MFS) [3-5,2,6,7], modified method [8].
Although there exists a vast literature on the Cauchy problem for the Helmholtz equation, to the authors’ knowledge, there
are much fewer papers devoted to the error estimates. The main aim is to give a regularization method and investigate the
error estimates between the regularization solution and the exact one.

Consider the Cauchy problem for the Helmholtz equation in a rectangle: determine the solution w(x,y) for0 <y < 1
from the input data ¢(-) := w(-, 0), h(-) := w) (-, 0), when w(x, y) satisfies

Awx, y) + KPwX,y) =0, 0<x<m,0<y<1,
wx, 0 =¢(x), 0=<x=m,
wy(x,0) =h(x), 0<x<m, (1.1)
w(0,y) =w(r,y) =0, 0<y=<1
Physically, ¢, h can only be measured, there will be measurement errors, and we would actually have as data some functions
¢°(x), h®(x) € [?(0, m), for which

I¢° — @Il + IIh® — h|| <6, (1.2)
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where the constant§ > Orepresents a bound on the measurement error, ||-|| denotes the L>-norm, and there exists a constant
E > 0, such that the following a priori bound exists (e.g., say, the energy of the solution w(x, y) at the right boundaryy = 1
is finite.)

lwC, DI <E. (1.3)
In order to solve this problem, we split the Cauchy problem into two independent Cauchy problems:
Aux,y) + Kux,y) =0, 0<x<m,0<y<1,
ux,0) = ¢p(x), 0<x<un,
uy(x,00=0, 0<x<m, (1.4)
u@,y) =u(r,y)=0, 0<y=<1
and
Avx,y) + Ko, y) =0, 0<x<m,0<y<l,
v(x,00=0, 0<x<m,
vy(x,0) =hx), 0<x<m, (1.5)
v(0,y) =v(m,y) =0, 0=y=1,

solve them and then take w = u + v.
It is easy to verify that the function

Un(x,y) = sin(mx) sinh( m? — kzy) , (1.6)
m
is the exact solution of problem (1.5) with
sin(mx)
Um(x, 0) = ¢m(x) = e (1.7)

where m > k are positive integers. Note that sup,c g ) [¢m(X)| tends to zero as m — 00, but supyc(o » [Um(*, Y)| —

oo(m — oo) for fixed y > 0. Thus Eq. (1.5) is an ill-posed problem so that it is impossible to solve using classical numerical

methods and requires special techniques, i.e., regularization method to be employed. Eq. (1.4) is also an ill-posed problem.
At the other hand, separation of variables leads to the solution of problem (1.4)

Z ¢, sin(nx) cosh ( n? — kzy) , 0<k<1,
uxy) =1{ "y % (1.8)
Z ¢, sin(nx) cosh ( kz — n2y) + Z ¢, sin(nx) cosh ( n? — I<2y) , k>1,
n=1 n=[k]+1
where
2 b
= —/ ¢ (t) sin(nt)dt. (1.9)
7T Jo

The solution of problem (1.5)

i d, sin(nx) sinh (\/ n? — k2y> , 0<k<Tl,

=1

v(x,y) = [k] (1.10)
Z d, sin(nx) sinh (\/ —n y) + Z d,, sin(nx) sinh ( I<2y) , k>1,
n=[k]+1
where
d / h(t) sin(nt)dt. 1.11
" —er (1.11)

We shall use perturbation method to construct stable solutions of the problems (1.1) and then obtain error estimate.
2. Modified regularization method
For system (1.4),if 0 < k < 1 we consider the system
A (x,y) + KU’ (x,y) — P, (x,y) =0, O<x<m0<y<1,
w(x 0 =¢°(x), 0<x<m,
w(x, 0 =0, 0<x=<m, (2.1)
u’(0,y) =u’(m,y) =0, 0<y<1.
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Separation of variables leads to the solution

ad ) n? — k2
wWx,y) = Z ¢’ sin(nx) cosh /my , (2.2)
n=1

where
2 T
== / @’ (t) sin(nt)dt. (2.3)
T Jo
If k > 1, we modified the exact solution u as follows:
[k] 00 n2 — k2
W,y = Z ¢’ sin(nx) cosh (\/ k2 — n2y> + Z ¢’ sin(nx) cosh —y, (2.4)
n=1 n=[k]+1 1 + I»»LGz

where ¢? is defined by (2.3).

Lemma 2.1. Suppose u be the solution of problem (1.4) with the exact data ¢ and u® be the modified solution defined by (2.2)
and (2.4) with the noise data ¢°, let ¢° satisfy ||¢° — @|| < 8 and let the exact solution u at y = 1 satisfy (1.3). If we select
n= ﬁ then for fixed 0 <y < 1 we get the error bound

5

PS4+ —— E 5 0<k<1,
1 () — uCy)l| < - (n(E/8)1 (2.5)
yel=y
§+ES +C‘(1n(E/5))2’ k=1,
where C1 = (55 + K (550" ie.
W’ (-, y) — uC, )|l < O((n(E/8))?), for 8 — 0. (2.6)

For system (1.5) we consider the system
AV (X, ) + K0 (x,y) — nPvd, (x,y) =0, 0<x<m 0<y<]I,

V(x,0 =0, 0<x=<m,
(%, 0)=h(x), 0<x=<m, 2.7)

’(0,y) =v’(r.y) =0, 0<y<1l
Separation of variables leads to the solution

nz _ k2
E dy sin(nx) sinh | ./ ———y | , 0<k<1,
n=1 T+ nen

V(x,y) = (2.8)
[k] 00 2 _ 2
Z d’ sin(nx) sinh (\/ k2 — n2y> + Z d’ sin(nx) sinh —5y| k=1,
n=1 n=[k]+1 1 + uen
where
s s
d, = «/ﬁ / h°(t) sin(nt)dt. (2.9)

Lemma 2.2. Suppose v be the solution of problem (1.5) with the exact data h and v’ be the modified solution defined by (2.8)
with the noise data h, let h? satisfy ||h® — h|| < 8 and let the exact solution v at y = 1 satisfy (1.3). If we select u = ]n:E)
5

for fixed 0 < y < 1we get the error bound

E
2Ey8]y+C2 O<k<l,

In E)*
V(L y) —vC )l < o (in) (2.10)
S+ -EsV 4G S k=1,
2 (In§)

V¢, y) — v, Y| < O((In(E/8))%),  for 8 — 0. (2.11)
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Theorem 2.3. Suppose that w = u+v is the solution with exact data [¢, h] and that w® = u®+v? is the solution with measured
data [¢s, hs].If we have a bound ||w(-, 1)|| < E, and the measured function satisfies ||¢ — ¢°|| + |h — h®|| < & and if we choose

= @7y then for fixed 0 <y < 1, we get the error bound
3, E
iEy(S y+(C1+C2)ﬁ, 0<k< 1,
In <
lw’(,y) = wC < 3 o (2.12)
24+ S8+ (G + G, k=1,
2 n)
ie.,
[w’(,y) — w(, Y < 0((n(E/8))?), for s — 0. (2.13)
Proof. |w — w?|| = ||(u+v) — W +v®)| < ||u — v?|| + ||lv — v?|, then the theorem is straightforward by using triangle

inequality and Lemmas 2.1 and 2.2. O

From Theorem 2.3, we find that w’® is an approximation of exact solution w. The approximation error depends

continuously on the measurement error for fixed 0 < y < 1. However, asy — 1, the accuracy of regularized solution
becomes progressively lower. This is common in the theory of ill-posed problems, if we do not have additional conditions
on the smoothness of the solution.

To retain the continuous dependence of the solution aty = 1, instead of (1.3), we introduce a stronger a priori assumption,

Pw(-,y)

o <E, (2.14)
y

y=1

where p > 0 is an integer. This priori condition shows that L>-norm of w(-, y)’s p-order derivatives with respect to the
variable y at the boundary y = 1 are bounded.

Theorem 2.4. Suppose that w is given with exact data [¢, h] and that w® is given with measured data [¢°, h®]. If we have an a
priori bound (2.14), and the measured function [¢°, h®] satisfies ||¢ — ¢°|| + ||h — h®|| < 8. The parameter . € (0, 1) is chosen
as

1
T (2.15)
In (5 (inf) )
Then for p > 0, we get the error bound
3 E
- = T & 0<k<l,
5 2 (Ing)
lw?C, 1) —w(, D|| < b) , (2.16)
S+ — p—l—sk, k> 1,
2 (in§)

where ¢ = max{3u?/3, 2 u?}E.

Remark 2.5. Since the regularization parameter .+ — 0 as the measured error § — 0, we can easily find that, for
p > 0,6 - 0(§ — 0), thus

lim flw(, 1) — w'(, D=0, p>o0.

Remark 2.6. We separately consider the case 0 < y < 1 and the case y = 1 in order to emphasize the following facts. For
the case 0 < y < 1, the a priori bound ||w(-, 1)|| is sufficient. However, for the case y = 1, the stronger a priori bound for

I am;;l;,y) ly=11l where p > 0 must be imposed.

Remark 2.7. For the quasi-reversibility method (2.1), the method is not unique, e.g., we can use the following method to
replace (2.1):

A (%, y) + U (X, Y) — Py ®.¥) =0, 0<x<m, 0<y<1,

X0 =¢’x), 0<x<m,

wWEx 0)=0, 0=<x=<m, (2.17)
w(0,y) =u’(r,y) =0, 0<y<1.
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To demonstrate the usefulness of the above method, we consider a special case (Please see Ref. [9]):

Un+ Uy +Ku=0 xeR

u(x, 0) = ¢(x) X€ER,
du(x,0) =0 x € R, (2.18)
uC,y) € L*(R) y€© 0.
We use the quasi-reversibility method:
Uge + Uy + KU — PlUgpyy =0 X ER
u(x, 0) = ¢5(x) x €R,
dyu(x,0) =0 x€R, (2.19)
uC,y) € L*(R) y€© .
By using Fourier transform technique with respect to variable x € R, we can easily obtain the regularization solution
(€, y) = cosh(yy/ (€2 — k) /(1 + p2E4) s (). (2.20)
3. Proofs of Lemmas 2.1 and 2.2, Theorem 2.4
Proof of Lemma 2.1. From (1.8), (2.2) and (2.4) we have
[o¢] o0
) =u(x,0) =Y csin(nx),  °(X) =u’(x,0) =Y ) sin(nx), (3.1)
n=1 n=1
where
2 (7 2 ("
= — / #(t)sin(nt)dt, ¢t == / ¢ (t) sin(nt)dt. (3.2)
T Jo T Jo
Thus the condition ||¢p — ¢®|| < & is equivalent to
T o0
n=

For the case 0 < k < 1, by the first equation of (1.8), the assumption ||u(-, 1)|| < E is equivalent to

o0
luC, DIF = 5 Y c? cosh? (V2 = k) < EZ. (3.4)
n=1

By the first equation in (1.8), (2.2), (2.4), (3.3) and (3.4), we have

[ 2 2
5.2 5 n® —k
¢y — Cy)“ cosh _—
n:l( ! n) 1+M2n2y
[oe] 2 2
b4 5 n? —k
— c cosh( n? — k2 ) — cosh _—
e n; ' g 14 un?”

6 supA(n) + E sup B(n),

n>1 n>1

A
N
2

Ju¢.y) —v®Cp| <

2\ 2

IA

where

on () o (2555
A(n) = cosh ﬁy , B(n) — " . (3‘5)
1+ u?n cosh (m)

We now estimate A(n). Since A(n) < cosh(ﬁ) < elyT, o)

§supA(n) < Seir = EV§1Y. (3.6)

n>1

In the following, we estimate B(n). Let§ = +/n2 — k2,7 =/ 1'i;2";2 ,note that £ > 7 and
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1—e" <r(r=>0), (3.7)
we get
2 2 2 e MoK 2 2N2,.2
el v L 59)
then
B(n) = cosh(§y) — cosh(zy) | _ (@ — e — & —emyjert™ ) (&5 — e™)(1 — e~ E+)
cosh(§) of +et < =

< e fUVE 0yl —e ) < (82 — ?)e Y = plnP (n? — KP)yPeE Y
= Wy 8 (E + ke T < glpte I 4 g2t Y = a(6) + b(E).

The function a(£) attains its maximum

it o (125) =00 (25)
max - ]—y —,LL (]—y)e ’

b(&) attains its maximum

2 2 2
bmax =b| ——) = u’kK? < ) .
© <1 —y) HE\a=ye

Consequently, for fixed0 <y < 1,

B(n) < Cip?, (3.9)

(4 A 202 V2
where C; = ((1_y)e) + k ((1_y)e) .
Hence, for fixed0 < y < 1,

E
W’ ¢y) —uC )l < B8 4+ G 2 (3.10)
(in)
In the following, we consider the case k > 1. Note that ||u(-, 1)|| < E is equivalent to
o g =l
lu, DI? = 5 Zcﬁ cosh? (\/ k? — n2) + 5 Z c? cosh? (\/n2 - k2> <E% (3.11)
n=1 n=[k]+1

Then, by the second equation in (1.8), (2.4), (3.3) and (3.11), we have

1

[K] 2 0 2 2
T T [ n?—k
luC-,y) — u‘s(.’y)” < (2 rZ:]:(C,1 — cg)z cosh? (,/kZ — nly)) + E Z (cn — C,f)2 cosh? " Mznzy

Nl—

n=[k]+1

2\ 1
00 2 2
b4 ) [ n*—k
+ | = C cosh( n? — k2y> — cosh —y
2 n:%;H n 14+ p2n?
<&+68 sup A(n)+E sup B(n),
n=[k]+1 n=[k]+1
where A(n) and B(n) is defined by (3.5). Similar to the case 0 < k < 1, we have
8 sup A(n) < E'8'7, (3.12)
n>[k]+1
E\ 2
B(n) < ¢ (ln 5) . (3.13)
Therefore, for fixed0 <y < land k > 1,
s 1- E
W’ ¢ y) —uC NI <S+E87Y + G O (3.14)

()"
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Proof of Lemma 2.2. Note that condition ||h — h®| < § gives
2 T 312 2
(=)= ;(dn —d)? <52 (3.15)
For the case 0 < k < 1, by the first equation of (1.10), the assumption ||v(-, 1)|| < E is equivalent to
o, DI = % idﬁ sinh? (M) <E2. (3.16)
n=1

By the first equation in (1.10), (2.8), (3.15) and (3.16), we have

N—=

[o¢]
8 T 52 i 12
(ORI ;(dn —d)?sinh’ | =g nzy
1
2\ 2
o0 _ k2
Z Z d? smh( n? —kzy — sinh n2y
< §sup(C(n)/v/n? —k?) +EsupD(n) < § —— sup(C(n)) +E sup D(n)
n>1 / n>1 \/ — k
where
2 — 12 sinh <«/ — kzy) - smh( n ’2"2 y>
C(n) = sinh ], D(n) = . (3.17)
1+ p’n? sinh (m)
We now estimate C(n).Since C(n) < sinh(/ll) < %e/%, so
1 .
dsupC(n) < —EV§' 7. (3.18)
n>1 2
In the following, we estimate D(n). Similar to (3.12) and (3.13), note that £ > 7 and
1
Vit <140, 1—e” <r(rz0), (3.19)
we get
— k2 1
=Vn2 — k2 — 2 _ 2
K T = 2“ n’vn? — k2, (3.20)
we have
D) — sinh(§y) — sinh(zy)| (e —e ¥)/2 — (e —e™™)/2
- sinh(&) n (e —e=%)/2
£y _ @€Y}/ — (eW — =) /2
< G e )/ (e e )/ (whenn > 2)
ef/2
&y _ -y _ ¢ &y _
_ (e5Y —e?) +§(e Ve ) - 2e y sery _ ge-50-9) (1 _ o)
e e

< w’n’yn? —12e 50 = 12 (82 + K)ge F0Y
= p2E3%e 0 4 21250 o (£) 4 d(E).

The function c(£) := p?&%e~$(=¥ attains its maximum

=< (725) =+ (25)
max - 1—y —,LL (_l_y)e ’
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d(&) attains its maximum

d <s>=d(#)=u2k2( ! )
e 1—y (1-ye

Consequently, for fixed0 <y < 1,

D(n) < Gu?, (321)
where G, = (5355)° + K (7550
Hence, for fixed0 < y < 1,
s 1,0, E
VCEy) —vEnI = SES 7+ G 5 (3.22)
2 (In5)

In the following, we consider the case k > 1. Note that ||v(-, 1)|| < E is equivalent to

[K] [o0]
lo(, DI = %ng sinh? (\/k2 — n2) + % Y dsinn? (\/n2 — k2) <E% (323)
n=1

n=[k]+1
Then, by the second equation in (1.10), (2.8), (3.3) and (3.23), we have

N=

1
[k] 2 o 2 _ |2
Gy — PGl < (n Dy — dy? sinh? (Vi - nzy)) Y () sion | [

= y
2 n=1 2 n=[k]+1 1 + M2n2
1
2\ 2
T n? — k2
+ | = Z d? sinh( n — k2y> — sinh —y
2 L V 1+ pu?n?
<&+68 sup C(n)+E sup D(n),
n=[k]+1 n=[k]+1
where C(n) and D(n) is defined by (3.17). Similar to the case 0 < k < 1, we have
1
8 sup C(n) < —E'8'7, (3.24)
n>[k]4+1 2
E\ 2
D(n) <G (ln 8) . (3.25)
Therefore, for fixed0 <y < land k > 1,
5 1 yaloy E
[V°Cy) v <8+ -F8 7 +G—w. O (3.26)
2 (in)
Proof of Theorem 2.4. Firstly, consider 0 < k < 1, from (1.8) and (2.14), we have
(e 9)
il 2,2 12 2 2 .
— ¢y)*(n® — k)P cosh“(n) < E*, is even,
Pt ) ) 2;(,1)( )P cosh?(n) < E%,  p
ayp B A TN 2 2
y=1 EZ(C”) (n® — kK*)P sinh®(n) < E?, pisodd.
n=1

T o0
— d))?(n?® — k*)P sinh?(n) < E?, is even,
— ) Zg(nn )P sinh?(n) < E%, p
D - o0
0Py r Xj(dn)z(n2 — k*)P cosh?(n) < E%, pisodd.
2 n=1

In the following, we only discuss the case that p is even, i.e.,

o0 o0
% D (en)* (@ — k)P cosh*(n) < E?, % D (da)’ (0> — IPYP sinh?(n) < E2. (3.27)
n=1 n=1
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Since the procedure of proof is completely similar when p is odd. Note that w = u + v and w® = u® + v®, we have

= 2
lwe. D=’ DI < |2 ;&,f (Cosh (V2 =#7) — cosh (x/dlri:;;;))

) /n2 _ kZ o /n2 _ ]2
+ T Z(C” — ¢2)2 cosh? Al + T Z(dn — d%)2sinh? AL
2 n=1 V 1 + ’u2n2 2 n=1 \% 1 + /’LGz

2
T ) ) Jn? — k2
+ \ 5 n;(dn)z (Slnh (\/ 112 — k2> — sinh <\/m>> .

Now the condition (3.37) and ||¢ — ¢°|| < 8 and ||h — h®|| < & lead to

lw, 1) —wl, D] < supA(n)E + sup 6(n)8 + supf)(n)(S + supé(n)E, (3.28)
n>1 n>1 n>1 n>1
where

~ cosh(&) — cosh(r) ~
An) = ————, C(n) = cosh(z),

™ V2 =12 cosh() (M = cosh(®
B(n) _ sinh(n) — sinh(7t) E(n) _ 1 sinh(7)

~ VnZ — k¥ sinh(¢) Vo> '

We now start estimating the second and third terms on the right-hand side of (3.28). Since cosh(-), sinh(-) are monotone
increasing functions in the interval [0, c0) and w is chosen in Theorem 2.4, we have

~ E -p
C(n)8 = cosh (\/n2 — kz/\/l + uznz) 8 < cosh(1/pu)8 < e/*s =E <ln E) , (3.29)
= 1 2 k2 1 1 1 1 E
D(n)é = - 2sinh( \/i2>8§2e;8:2 —.
T\ iren) S viok 0T 2VioR ()

We now consider ;\(n) + B(n), taking the similar procedure of Lemmas 2.1 and 2.2, then

A(n) +B(n) < 3(1 —e ¢~ /&P. (3.30)
For estimating (3.30), we now distinguish between two cases.
Case 1: for large values of n, i.e., for £ = +/n? — k2 > ﬁ note that £ > 7, we have

Am) + B(n) < 35% <3.%. (331)

Case 2: for& < ﬁ using inequalities 1 — e < r(r > 0), we have

A(n) + B(n) < ;,353—1’. (3.32)
If0 < p < 3, from (3.32), we have

A(m) + B(n) < gpﬂ (#)3 " %uz?“. (3.33)
If p > 3, note that n > 1, from (3.32), we have

A(n) + B(n) < guz = %;ﬁ. (3.34)

Summarizing (3.31), (3.33) and (3.34), we complete the estimate of the first term and the forth term on the right-hand side
of (3.28), i.e.,

I B(n) < 3 3 2 _.
A(n) 4+ B(n) < max {3u’>, 2“ E=¢, p>0. (3.35)
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Secondly, consider k > 1, from (1.8) and (2.14), we have

[k]

o0
— Z(cn) (K® = n?)” cosh? (\/ k% — nz) + g Z c2(n* — k?)P cosh? (\/ n? — kz) < E?, piseven,

thl+1 (3.36)
3 .
= Z(c,,)z(k2 — n?)? sinh? (\/k2 — n2) + % 3 2 — kY sinh? (\/n2 — k2) <E2, pisodd.
n=1 [k]+1

From (1.10) and (2.14), we have

[k]

— Z(d )2(k* — n?)P sinh? ( k2 — nz) Z dz(n — k?)P sinh? (\/ n? — k2) < E?, piseven,

“‘”‘ (3.37)
[kJ .
Z(dn) (% — n2)P cosh2< i — ) Z @ (n? — k?)P cosh? (\/n2 —kZ) <E2, pisodd.

[k]+1

In the following, we only discuss the case that p is even, since the procedure of proof is completely similar when p is odd.
Note that w = u + v and w® = u® + v?, we have

[k] [k]
lw(, 1) — w'C, 1| < Z(cn—ca)zcoshz( =) + Z(d — dyy2sinh? (Vie — n2)

n=1 n=1

2
I_ 12

+ | = (cp)? | cosh (v/n% — k%) — cosh (n))
[;:1 ( ( ) V1+uin

2 _kZ 0
S )+ |2y (@ — d))? sinh?
V14 u?n? 2

_ — 8)2 2
+ 5 Z(cn c)? cosh
[k]+1

n? — k2
[k=1 ! V14 p?n?

5 > . Vn? —k? 2
+ | = Z(d ) (smh (\/ —k ) — sinh (\/m>> .

z

\ [kl+1
Now the condition (3.36), (3.37) and ||¢ — ¢°|| < 8 and ||h — h®|| < & lead to
5 cosh& — cosht
fw(, 1) —w(, || <264+ sup ——— E+ 6§ sup coshrt
n>[kl+1 &P coshé n=[kl+1
sinh& — sinh 1 2p2
+ sup E. TE—i—S —:M >~ sup sinh 7.

nzikl+1 &P sinh§ n? —k* iz

Similar to the case 0 < k < 1, note that £ > 1, by (3.29), we have

E —p

8 sup cosht < cosh(1/u)8 <e'/t§ =E <ln 7> (3.38)

n>[k]+1 )

5 inht < o6 et <1 _F (3.39)
— — sup sinht < —§——e Z ‘
n% — k2 n>pig 4 2 JnP—k 7 2(n %)p

cosh& — cosh sinh& — sinh t
cosh§ — cosh Sinh§ = SINNT - 5q _ e=enygrp, (3.40)
nzfk+1 &P cosh§ nzfkl+1 &P sinh§

Case 1: for large values of n, i.e., for § = +/n2 — k2 > # note that £ > 7, we have

( cosh& — cosht sinh& — sinht
n>[k]4+1

p
su E <3t PE=3u3E. 3.41
&P cosh & nz[k]l:-)i—l EPsinh & ) =3 # ( :

Case 2: for & < ﬁ,note that £ > 1, we have

1.ifp > 3, sup

cosh& —cosht sinh& — sinht 3 5,
_ sup ————F < —pks; (3.42)
n=fg+1 &P cosh§ n=fk+1 &P sinh§ 2
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. cosh& — cosht sinh& — sinht 3 3,2
2.iff0 <p < 3, sup ———— + sup ————E < PPk, (3.43)
n=[ki+1 &P cosh§ nz[kl+1 &P sinh§ 2

Therefore, for k > 1, by (3.41)-(3.43), the second estimate in (2.16) is satisfied. O

4. Concluding remark

In this paper, we consider the non-characteristic Cauchy problem for the Helmholtz equation. Some logarithmic stability
estimates are proved. The logarithmic stability estimates are much weak. We hope to obtain the Holder stability estimates
by the spectral cut-off method. This will be studied in the forthcoming paper.
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