期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:242
Nonlinear periodic solutions for isothermal magnetostatic atmospheres
Article
Khater, A. H.1  Callebaut, D. K.2  Bhrawy, A. H.1,3  Abdelkawy, M. A.1 
[1] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[2] Univ Antwerp, Dept Phys, CDE, B-2610 Antwerp, Belgium
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
关键词: Nonlinear equations;    Magnetohydrostatic equilibria;    Grad-Shafranov equation;    Backlund transformations;    Solar atmosphere;   
DOI  :  10.1016/j.cam.2012.10.012
来源: Elsevier
PDF
【 摘 要 】

The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are investigated analytically. For equilibria with one ignorable spatial coordinate, the equations reduce to a single nonlinear elliptic equation for the magnetic potential known as the Grad-Shafranov equation. Specifying the arbitrary function in the latter equation, yields a nonlinear elliptic equation. Analytical nonlinear periodic solutions of this elliptic equation are obtained for the case of an isothermal atmosphere in a uniform gravitational field: e.g. a model for the solar atmosphere. We obtained several classes of exact solutions of five nonlinear evolution equations (Liouville, sinh-Poisson, double sinh-Poisson, sine-Poisson and double sine-Poisson) using the generalized tanh method. Moreover, the Backlund transformations are used to generate further new classes of solutions. The final results may be used to investigate some models in solar physics. (C) 2012 Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2012_10_012.pdf 428KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次