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a b s t r a c t

The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are
investigated analytically. For equilibriawith one ignorable spatial coordinate, the equations
reduce to a single nonlinear elliptic equation for the magnetic potential known as the
Grad–Shafranov equation. Specifying the arbitrary function in the latter equation, yields a
nonlinear elliptic equation. Analytical nonlinear periodic solutions of this elliptic equation
are obtained for the case of an isothermal atmosphere in a uniform gravitational field: e.g.
a model for the solar atmosphere. We obtained several classes of exact solutions of five
nonlinear evolution equations (Liouville, sinh–Poisson, double sinh–Poisson, sine–Poisson
and double sine–Poisson) using the generalized tanh method. Moreover, the Bäcklund
transformations are used to generate further new classes of solutions. The final results may
be used to investigate some models in solar physics.

© 2012 Published by Elsevier B.V.

1. Introduction

The equations of magnetostatic (MS) equilibria have been used extensively to model solar magnetic structures in many
articles. Heyvaerts et al. studied the general properties for a series of two-dimensional magnetohydrostatic configurations
in [1]. Two types of mechanisms of nonlinear force-free magnetic fields have been treated by Low [2]. Magnetostatic
field problems are studied in [3–6], where in [7], Lerche and Low study a class of astrophysical magnetic fields nonlinear
problems. Khater et al. find exact soliton solutions in strongly relativistic cold plasma. Moreover magnetohydrodynamic
problems studied in [8–11]. The force balance in thesemodels consists of a balance between the pressure gradient force, the
Lorentz J∧B force (with j = electric current density, B = magnetic induction) and the gravitational force. The temperature
distribution in the atmosphere is, in general, determined from the energy transport equation. However, in many models,
the temperature distribution is specified a priori, and direct reference to the energy equation is eliminated. The remaining
equations for the system are an equation of state for the gas (e.g., the dependence of the gas pressure on density and
temperature) and the steady-state Maxwell’s equations.

Manymodels ofMS equilibria assume that one of the spatial coordinates is ignorable, see for example the articles [12–18],
leading to simple analytical models in terms of linear or nonlinear equations for themagnetic potential A. Generalizations of
this equation for steady-state MHD flows with one ignorable coordinate have been obtained by Tsinganos [9] and Low [19]
both having reduced the MS equilibrium problem to one of solving a single PDE involving two scalar potentials describing
themagnetic field. This development does not require the existence of an ignorable coordinate in the system and arises from
a local compatibility condition for the magnetic field [20–22]. However, the nonlinear problem has been solved in several
cases (see, for instance [17,18,23–25]).
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In this article, we present a set of exact analytical periodic solutions for the Liouville, sinh, double sinh, sine and
double sine–Poisson equations modelling isothermal MS atmosphere using the generalized tanh and Jacobi elliptic function
methods [26,27]. Moreover, the Bäcklund transformations are used to generate further new classes of solutions.

2. The generalized tanh method

The key idea in this method is to use the solution of a Riccati equation to replace the tanh function in the tanh method.
In what follows, the method will be reviewed briefly. Consider a given nonlinear evolution equation (NLEE)

G(u, ux, uy, ut , uxy, . . .) = 0. (1)

We like to know whether travelling waves (or stationary waves) are solutions of Eq. (1). The first step is to unite the
independent variables x, y and t into one particular variable through the definition

ζ = x + αy, u(x, y) = U(ζ ),

and change (1) to an ordinary differential equation (ODE)

G(U,U ′,U ′′,U ′′′, . . .) = 0. (2)

Our main goal is to derive exact or at least approximate solutions, if possible, for these ODEs. For this purpose, we introduce
a new variable

ψ = ψ(ζ ),

which is a solution of the Riccati equation

ψ ′
= k + ψ2. (3)

Then we try the following series expansion as a solution of Eq. (1):

u(x, y) = U(ζ ) =

m
i=0

aiψ i. (4)

The parameter m is determined by balancing the linear term(s) of highest order with the nonlinear one(s) of highest order.
Normallym is a positive integer, so that an analytical solution in closed formmay be obtained. Substituting Eq. (3) into Eq. (4)
and comparing the coefficients of each power of ψ in both sides, we get an overdetermined system of nonlinear algebraic
equations with respect to k, a0, a1, . . . . One may solve this over-determined system e.g. by means of the computer algebra
system. By using the results obtained, we can derive several types of solutions:

(i) for k < 0

ψ =


−

√
−k coth(

√
−kζ ),

−
√

−k tanh(
√

−kζ ),
(5)

(ii) for k = 0

ψ =
−1
ζ + c

, (6)

(iii) for k > 0

ψ =


−

√
k cot(

√
kζ ),

√
k tan(

√
kζ ).

(7)

Another advantage of the Riccati equation (3) is that the sign of k can be used to exactly judge the amount and types of the
travelling wave solution of Eq. (1).

3. Basic equations and problem formulation

The equations used to describe MS atmosphere consists of the force balance equation

j ∧ B − ∇P − ρ∇Φ = 0, (8)

where j and B are the electric current density and the magnetic induction, respectively coupled with Maxwell’s equations

µj = ∇ ∧ B, (9)

∇ · B = 0, (10)
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where P, ρ, µ and Φ are the gas pressure, the mass density, the magnetic permeability and the gravitational potential,
respectively. We assume that the temperature is uniform in space and the plasma is an ideal gas with equation of state

P = ρR0T0, (11)

where R0 is the gas constant and T0 is the uniform temperature.
Consider a system of Cartesian coordinates (x, y, z), in which x is an ignorable coordinate and z measuring height, then

the magnetic induction B may be written as

B = ∇A ∧ ex + Bxex =


Bx,

∂A
∂z
,−
∂A
∂y


, (12)

where A(y, z) and Bx(y, z) are themagnetic flux function and the x-component of B, respectively. Note that the form Eq. (12)
for B ensures that ∇ · B = 0. Since B · ∇A = 0, A(y, z) is constant along the magnetic lines of force. We restrict our attention
to isothermal atmospheres in a uniform gravitational field (Φ = gz), in which Bx = 0 and using the ideal gas law equation
(11) to relate the pressure and the density to the uniform temperature T0 of the atmosphere, Eq. (8) then requires that the
pressure and the density have the form [25]

P(y, z) = P(A)e−z/h, (13)

ρ(y, z) =
1
gh

P(A)e−z/h, (14)

where h = R0T0/g is the (constant) scale height, and P(A) is an arbitrary function of one variable to describe the variation
of pressure across the magnetic lines of force at some constant height. Substituting Eqs. (9), (12)–(14) into Eq. (8), one
gets [7,13]

∇
2A + f (A)e−z/h

= 0, (15)

where

f (A) = µ
dP
dA
. (16)

Subject to suitable boundary conditions on A, Eq. (15) may be solved for A in a given domain if the functional form P(A) is
prescribed in some suitablemanner [12,13]. Eq. (15) is Ampere’s law, which has been put in a form that relates themagnetic
field to the plasma distribution through the equation for mechanical equilibrium.

The term f (A) is, in general, nonlinear in A raising nontrivial question of existence, uniqueness, and regularity of solutions
to boundary value problems based on Eq. (15). Rigorous and general mathematical results on these questions for Eq. (15)
in the nonlinear regime have been obtained and discussed [1,28]. The absence of a regular solution may be interpreted to
imply that electric current sheets are unavoidable. Eq. (16) gives

P(A) = P0 +
1
µ


f (A)dA. (17)

Substituting Eq. (17) into Eqs. (13) and (14), we get

P(y, z) =


P0 +

1
µ


f (A)dA


e−z/h, (18)

ρ(x, z) =
1
gh


P0 +

1
µ


f (A)dA


e−z/h, (19)

where P0 is constant. Take the conformal transformation [23]

x1 + ix2 = e−z/leiy/l. (20)

Eq. (15) reduces to

∂2A
∂x21

+
∂2A
∂x22

+ l2f (A)e

2
l −

1
h


z
= 0. (21)

In the following sections we will consider three cases for f (A).
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4. Liouville equation

Let us assume that f (A) has the form [12,13]:

f (A) = −α2A0e−2A/A0 , (22)

where α2 and A0 are constants. Hence

P(y, z) =


P0 +

α2A2
0

2µ
e−2A/A0


e−z/h. (23)

The term involving P0 represents a plane-stratified component of the atmosphere. The corresponding form of Eq. (21) is
given by using Eqs. (21) and (22) as

∇
2A/A0 = α2l2e−2A/A0+


2
l −

1
h


z
, (24)

where ∇
2

=
∂2A
∂x21

+
∂2A
∂x22

.

Solutions of Eq. (24) have been obtained previously in cases [21,22]. If we set P0, removing the plane-parallel component
of the atmosphere, this is the well-known model for an infinite vertical sheet of diffuse plasma suspended by bowed
magnetic field-lines.

To solve (24), we are looking for the solution where A is periodic in ywith period 2π l [12,13]

A(y + 2π l, z) = A(y, z), (25)

which corresponds to an array of plasma condensations or current filaments that are arranged periodically in the y-direction.
These condensations are to be of finite extent vertically. Hence in the far region z → ±∞, the field is required to be
horizontal and uniform. The following boundary conditions apply

lim
z→±∞

B = B±ŷ, (26)

where B± and ŷ stand as usual are the constant field strengths and the unit vector in the y direction. Eq. (24) is a nonlinear
elliptic PDE and one cannot take for granted that boundary conditions Eqs. (25) and (26) admit a solution and, where a
solution exists, that it is unique. Let us set

A/A0 = z/L + ω(y, z), (27)

where L is a constant. Eq. (24) becomes

∇
2ω − α2l2e−2ω−


2
L +

1
h −

2
l


z
= 0. (28)

Let us identify the period l by:

2/l = 2/L + 1/h. (29)

Note that under the transformation (20), and take l > 0, we have transformed the region 0 ≤ y ≤ 2π l, 0 ≤ z ≤ ∞ into
the entire x1 − x2 plane with origin x1 = x2 = 0 corresponding to z → ∞ and the region x21 + x22 → 1 corresponding
to z → −∞. Noting that in the limit of an infinite period l as l → ∞, Eq. (29) implies 2/L = −1/h, and one recovers the
single-structure solutions [22,23].
Eq. (28) transforms into a Liouville type equation

∂2ω

∂x21
+
∂2ω

∂x22
− α2l2e−2ω

= 0. (30)

Taken the transformation

e−2v
= u.

Eq. (30) tends to

(ux1)
2
+ (ux2)

2
− uux1x1 − uux2x2 − 2α2l2u3

= 0. (31)

Using the generalized tanh method we find:

U = a0[1 − tanh2
√

−kζ ], k < 0. (32)
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Substituting Eq. (32) into Eq. (27), yields

A/A0 =


1
l

−
1
2h


z −

1
2
ln(a0)− ln


sec h

√
−k


cos

y
l


− ν sin

y
l


e−z/l


, (33)

B/A0 =


0,

1
l

−
1
2h


−

√
−k
l

e−z/l(cos(y/l)− ν sin(y/l))× tanh[e−z/l
√

−k(cos(y/l)− ν sin(y/l))],

√
−k
l

e−z/l(sin(y/l)+ ν cos(y/l))× tanh[e−z/l
√

−k(cos(y/l)− ν sin(y/l))]


, (34)

P = P0e−z/h
+
α2A2

0a0
2µ

e−2z/l sec h2

e−z/l

√
−k


cos

y
l


− ν sin

y
l


. (35)

The magnetic and plasma pressures are given by

Pm =
A2
0

2µ


1
l

−
1
2h

2

−
1 + ν2

l2
ke−2z/l

× tanh2
[e−z/l

√
−k(cos(y/l)− ν sin(y/l))]

−
2
l


1
l

−
1
2h


e−z/l

√
−k(cos(y/l)− ν sin(y/l))× tanh[e−z/l

√
−k(cos(y/l)− ν sin(y/l))]


, (36)

P =
α2A2

0a0
2µ

e−2z/l sec h2

e−z/l

√
−k


cos

y
l


− ν sin

y
l


. (37)

We consider the following subcases.

(i) The subcase in which l = 2h. In this subcase, B = 0 as z → ∞.
(ii) The subcase in which l > 2h (e.g. l = 3h). In this subcase, B/A0 = −

1
6h ŷ as z → ∞. Hence as l increases above 2h, a

nonzero field appears at z → ∞ of negative sign.
(iii) The subcase in which l < 2h (e.g. l = h). In this subcase, B/A0 =

1
2h ŷ as z → ∞. Hence as l decreases below 2h, a

nonzero field appears at z → ∞ of positive sign.

The magnetic and plasma pressures are displayed in Fig. 1(a), (b) for the subcase (ii) respectively, with values of
parameters listed in their captions. In Fig. 2(a), (b) are given: (a) themagnetic field lines (contours of A) and (b) the associated
density enhancement, with values of parameters listed in their captions, respectively.

Case 1 Case 2 Case 3
Parametric l = h l = 2h l = 3h
Ranges α > 0 α > 0 1 + α2

≥
l2

4h2

Field at z → ∞
1
2h ŷ 0 −

1
6h ŷ

5. Sinh–Poisson equation

Let us assume that f (A) has the form

f (A) = −
λ2

4


A0

h


sinh(Ã), (38)

where Ã = A/(hA0) is a dimensionless form of A, λ is a dimensionless constant, Eqs. (18) and (38) give

P(y, z) =


P0 −

λ2A2
0

4µ
cosh Ã


e−z/h. (39)

The corresponding form of Eq. (21) is given by using Eqs. (38) and (21) as

∂2Ã
∂x21

+
∂2Ã
∂x22

= λ2 sinh(Ã), (40)

where l = 2h. Taken the transformation

eÃ = u where sinh(Ã) =
eÃ − e−Ã

2
.
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Fig. 1. (a) Themagnetic pressures for l = 2h, 0 ≤ z ≤ 1 and 0 ≤ y ≤ π for Eq. (32). (b) The plasma pressure (pressure enhancement) for l = 2h, 0 ≤ z ≤ 1
and 0 ≤ y ≤ π for Eq. (33).
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Fig. 2. (a) The magnetic field lines (contours of A) for α = 1, l = 2h and −2π ≤ y ≤ 2π for Eq. (32). (b) The associated density enhancement for
α = 1, l = 2h and −2π ≤ y ≤ 2π for Eq. (33).

Eq. (40) tends to

2(ux1)
2
+ 2(ux2)

2
− 2uux1x1 − 2uux2x2 + λ2(u3

− u) = 0. (41)

Using the generalized tanh method we find that, the solution of Eq. (41) reads (k > 0)

A/A0 = 2h ln

tan e−z/l

√
k(cos(y/l)− ν sin(y/l))


. (42)

The associated magnetic induction and pressure are given by

B/A0 =


0,−

√
ke−z/2h


(cos(y/2h)− ν sin(y/2h))× sec[

√
ke−z/2h(cos(y/2h)− ν sin(y/2h))]

× cosec[e−z/2h
√
k(cos(y/2h)− ν sin(y/2h))]


,−

√
ke−z/2h


(− sin(y/2h)− ν cos(y/2h))

× sec[e−z/2h
√
k(cos(y/2h)− ν sin(y/2h))] × cosec[e−z/2h

√
k(cos(y/2h)− ν sin(y/2h))]


, (43)

P = P0e−z/h
−
λ2A2

0

8µ
e−z/h

[tan2(e−z/2h
√
k(cos y/2h − ν sin y/2h))+ 1]. (44)

The magnetic and plasma pressures are given by

Pm = ke−z/h(1 + ν2)cosec2[e−z/2h
√
k(cos y/2h − ν sin y/2h)] × sec2[e−z/2h

√
k(cos y/2h − ν sin y/2h)], (45)

P = −
λ2A2

0

8µ
e−z/h

[tan2(e−z/2h
√
k(cos y/2h − ν sin y/2h))+ 1]. (46)

The magnetic and plasma pressures are displayed in Fig. 3(a), (b) respectively, with values of parameters listed in their
captions. Fig. 4(a), (b) give (a) the magnetic field lines (contours of A) and (b) the associated density enhancement
respectively, with values of parameters listed in their captions.

6. Double sinh–Poisson equation

Let us assume that f (A) has the form

f (A) = −
λ2

4


A0

h


(sinh(Ã)+ sinh(2Ã)).
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Fig. 3. (a) The magnetic pressures for 0 ≤ z ≤ 1 and 0 ≤ y ≤ π for Eq. (44). (b) The plasma pressure (pressure enhancement) for 0 ≤ z ≤ 1 and
0 ≤ y ≤ π for Eq. (45).
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Fig. 4. (a) The magnetic field lines (contours of A) for α = 1, and −2π ≤ y ≤ 2π for Eq. (44). (b) The associated density enhancement for α = 1, and
−2π ≤ y ≤ 2π for Eq. (45).

Eq. (18) gives

∂2Ã
∂x21

+
∂2Ã
∂x22

= λ2(sinh(Ã)+ sinh(2Ã)), (47)

where l = 2h. Proceeding as in the previous case and using the generalized tanh method, we find that the associated
magnetic induction and pressure are given by

B/A0 =


0,−


k
12

e−z/2h


(cos(y/2h)− ν sin(y/2h))×

sec2[
√
ke−z/2h(cos(y/2h)− ν sin(y/2h))]

tan[e−z/2h
√
k(cos(y/2h)− ν sin(y/2h))] − 1


,

k
12

e−z/2h


(sin(y/2h)+ ν cos(y/2h))×

sec2[
√
ke−z/2h(cos(y/2h)− ν sin(y/2h))]

tan[e−z/2h
√
k(cos(y/2h)− ν sin(y/2h))] − 1


, (48)

P = P0e−z/h
−
λ2A2

0

128µ
e−z/h

×


9 tan2(e−z/2h

√
k(cos y/2h − ν sin y/2h))

− 6 tan(e−z/2h
√
k(cos y/2h − ν sin y/2h))+ 10 cot(e−z/2h

√
k(cos y/2h − ν sin y/2h))

+ 7 cot2(e−z/2h
√
k(cos y/2h − ν sin y/2h))


. (49)

The magnetic and plasma pressures are given by

Pm =
k
4
e−z/h(1 + ν2)

sec4[e−z/2h
√
k(cos y/2h − ν sin y/2h)]

(tan[e−z/2h
√
k(cos y/2h − ν sin y/2h)] − 1)2

, (50)

P = −
λ2A2

0

128µ
e−z/h

×


9 tan2(e−z/2h

√
k(cos y/2h − ν sin y/2h))+ 7 cot2(e−z/2h

√
k(cos y/2h − ν sin y/2h))

− 6 tan(e−z/2h
√
k(cos y/2h − ν sin y/2h))+ 10 cot(e−z/2h

√
k(cos y/2h − ν sin y/2h))


. (51)
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7. Sine-Poisson equation

Let us assume that f (A) has the form

f (A) = −
λ2

4


A0

h


sin(Ã), (52)

where

Ã = A/(hA0), (53)

is a dimensionless form of A, λ is a dimensionless constant, Eqs. (18) and (52) give

P(y, z) =


P0 +

λ2A2
0

4µ
cos Ã


e−z/h. (54)

The corresponding form of Eq. (21) is given by using Eqs. (21) and (52) as

∂2Ã
∂x21

+
∂2Ã
∂x22

= λ2 sin(Ã), (55)

where l = 2h. Taken the transformation

eiÃ = u where sin(Ã) =
eiÃ − e−iÃ

2i
.

Eq. (55) tends to

2(ux1)
2
+ 2(ux2)

2
− 2uux1x1 − 2uux2x2 + λ2(u3

− u) = 0. (56)

Using the generalized tanh method the magnetic and plasma pressures are given by

Pm = ke−z/2h(1 + ν2)cosec2[e−z/2h
√
k(cos y/2h − ν sin y/2h)] × sec2[e−z/2h

√
k(cos y/2h − ν sin y/2h)], (57)

P =
λ2A2

0

4µ
e−z/h tan

4
[e−z/2h

√
k(cos(y/2h)− ν sin(y/2h))] + 1

2 tan2[e−z/2h
√
k(cos(y/2h)− ν sin(y/2h))]

. (58)

8. Double sine–Poisson equation

Let us assume that f (A) has the form

f (A) = −
λ2

4


A0

h


(sin(Ã)+ sin(2Ã)).

Eq. (18) gives

∂2Ã
∂x21

+
∂2Ã
∂x22

= λ2(sin(Ã)+ sin(2Ã)), (59)

where l = 2h. Proceeding as in the previous case and using the generalized tanh method, we find that the magnetic and
plasma pressures are given by

Pm =
k
4
e−z/h(1 + ν2)

sec4[e−z/2h
√
k(cos y/2h − ν sin y/2h)]

(tan[e−z/2h
√
k(cos y/2h − ν sin y/2h)] − 1)2

, (60)

P = −
λ2A2

0

128µ
e−z/h

×


9 tan2(e−z/2h

√
k(cos y/2h − ν sin y/2h))− 6 tan(e−z/2h

√
k(cos y/2h − ν sin y/2h))

+ 10 cot(e−z/2h
√
k(cos y/2h − ν sin y/2h))+ 7 cot2(e−z/2h

√
k(cos y/2h − ν sin y/2h))


. (61)

9. The Ablowitz–Kaup–Newell–Segur system and Bäcklund transformations

The Bäcklund transformation (BT) technique is one of the direct methods for generating a new solution of a NLEE from
a known solution of that equation [29]. Previously, Konno and Wadati [30], for example, had derived some BTs for the
NEEs of the AKNS class. These BTs explicitly express the new solutions in terms of the known solutions of the NEEs and
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the corresponding wave functions, which are solutions of the associated Ablowitz–Kaup–Newell–Segur (AKNS) system. The
AKNS system is a linear eigenvalue problem in the form of a system of first-order PDEs. Therefore, the problem of obtaining
new solutions by BTs is equivalent to obtaining thewave function. It is known thatmany NEEs can be derived from the AKNS
system

φX = Pφ, φY = Qφ, (62)

where

φ =


φ1
φ2


, P =


η q
r −η


, Q =


A′ B
C −A′


. (63)

Here η is a parameter, which is independent of X and Y while q and r are functions of X and Y , we will have the following
system of PDEs for the unknowns φ1 and φ2:

φ1X = ηφ1 + qφ2,

φ2X = rφ1 − ηφ2,

φ1Y = A′φ1 + Bφ2,

φ2Y = Cφ1 − A′φ2,

(64)

P and Qmust satisfy the integrability condition

−A′

X + qC − rB = 0,

qY − BX + 2ηB − 2qA′
= 0,

rY − CX + 2rA′
− 2ηC = 0.

(65)

By a suitable choice of r, A′, B, and C in (63) we can obtain many NEEs which q must satisfy. Konno and Wadati [30]
introduced the function

Γ =
φ1

φ2
, (66)

for each of the NEEs, they derived a BT with the form

U ′
= U + f (Γ , η) (67)

where U ′ is the new solution generated from the old solution U . For use of the sequel, we list the NEEs and their
corresponding BTs in the following.

The known travelling-wave solution of the NLEEs takes the form

q = q(ϖ); ϖ = X − κY (κ is constant). (68)

Suppose that the components q and r of the matrix P are functions ofϖ

q = q(ϖ), r = r(ϖ),

then the components A′, B and C of the matrix Q determined by Eqs. (64) are also functions ofϖ . We solve the system (65)
by applying the method of characteristics. Eq. (64) possesses the following characteristic:

dY
−r

=
dX
C

=
dφ2

1
2 (CX − rY )φ2

. (69)

Integrating we find that

φ2 = k2(C + κr)
1
2 , (70)

−Y + k1 =


r

C + κr
dϖ, (71)

where k1, k2 are integration constants. Denote

σ(ϖ) =


r

C + κr
dϖ. (72)

From (70) and (72), we obtain the general solution of Eq. (64):

φ2 = (C + κr)
1
2 f (ε), (73)
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where

ε = σ(ϖ)+ Y ,

and f (ε) is a differentiable function of ε. Substituting (73) into (64) gives the general solution of φ1

φ1 = (C + κr)
−1
2 [f ′

ε + (A′
+ κη)f ], (74)

where f ′
ε =

df
dε . To determine the function f , from (71), (74) and the first equation in (64) we find that f must satisfy the

following second order ODE:

f ′′

εε −βf = 0, (75)

whereβ is a constant defined by

β = (A′
+ κη)2 + (B + κq)(C + κr), (76)

will have the following three different solutions:

f = c1ε + c2 β = 0, (77)

f = c1 sinh δ(ε + c2) β > 0, δ2 = β, (78)

f = c1 sin δ(ε + c2) β < 0, δ2 = −β, (79)

where c1 and c2 are integration constants. Substituting these solutions into (74) and (73), respectively, we obtain the
corresponding different solutions of the system (81)–(82):

forβ = 0
φ1
φ2


=


(C + κr)

−1
2 [(A′

+ κη)(c1ε + c2)+ c1]

(c1ε + c2)(C + κr)
1
2


, (80)

forβ > 0
φ1
φ2


=


c1(C + κr)

−1
2 [(A′

+ κη)(sinh δ(ε + c2))+ δ cosh δ(ε + c2)]

(c1 sinh δ(ε + c2))(C + κr)
1
2


, (81)

forβ < 0
φ1
φ2


=


c1(C + κr)

−1
2 [(A′

+ κη)(sin δ(ε + c2))+ δ cos δ(ε + c2)]

(c1 sin δ(ε + c2))(C + κr)
1
2


. (82)

These results (80)–(82) are valid for any NLEE contained in the AKNS system (94) − (63), provided that they meet the
assumption (87). Now we apply the results obtained here to get solutions of the following.

1. The Liouville equation.
Take the transformation

X =
αλ
√
2
(ix1 − x2), Y =

αλ
√
2
(ix1 + x2) and U(X, Y ) = −2w(x1, x2). (83)

Eq. (30) becomes

UXY = eU , (84)

P =

 η
1
2
UX

1
2
UX −η

 , Q =
1
4η


eU −eU

eU −eU


, (85)

U ′
= U − 2 ln


Γ + 1
Γ − 1


. (86)
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Then from (30), (32), (63), (83) and (85) we find the following

C = A′
= −

1
B

=
a0
4η


1 − tanh2

√
−k


cos

y
l


− ν sin

y
l


e−z/l


, k < 0, (87)

q = r = γ1 tanh
√

−k

cos

y
l


− ν sin

y
l


e−z/l


, γ1 =

√
−k(ν − i)
√
2αλ

. (88)

σ(ϖ) =
1

ηκγ1

2γ1ϖ +
2

a20 + 4η2κ2γ 2
1

tanh−1

a0 + 2ηκγ1e2γ1ϖ
a20 + 4η2κ2γ 2

1

 . (89)

Then using Eqs. (66), (72), (80), (81), (86)–(89) we find the new solution.

2. The sinh–Poisson equation.

Take the transformation

X =
λ

2
(x1 + ix2), Y =

√
λ

2
(x1 − ix2) and U(X, Y ) =A(x1, x2). (90)

Eq. (40) becomes

UXY = sinhU, (91)

P =

 η
1
2
UX

1
2
UX −η

 , Q =
1
4η


coshU − sinhU
sinhU − coshU


, (92)

U ′
= U − 4 tanh−1(Γ ). (93)

Then from (43), (63), (72), (80) and (82) we find the following

C = −B =
1
4η

sinh

ln

tan2

√
−k


cos

y
l


− ν sin

y
l


e−z/l


,

A′
=

1
4η

sinh

ln

tan2

√
−k


cos

y
l


− ν sin

y
l


e−z/l


k < 0,

(94)

q = r =
γ2 sec2(γ2(X − κY ))
tan(γ2(X − κY ))

, γ2 =
1 + νi
λ

. (95)

σ(ϖ) =
2η(8ηϖκγ 2

2 + ln(cos 2γ2ϖ)+ 4ηκγ2 sin 2γ2ϖ)
1 + 16η2κ2γ 2

2
. (96)

Then using Eqs. (66), (72), (80) − (72), (82)–(86) we find the new solution.

3. The sine–Poisson equation.

Take the transformation

X =
λ

2
(x1 + ix2), Y =

√
λ

2
(x1 − ix2) and U(X, Y ) =A(x1, x2). (97)

Eq. (66) becomes

UXY = sinU, (98)

P =

 η −
1
2
UX

1
2
UX −η

 , Q =
1
4η


cosU sinU
sinU − cosU


, (99)

U ′
= U − 4 tanh−1(Γ ). (100)



A.H. Khater et al. / Journal of Computational and Applied Mathematics 242 (2013) 28–40 39

Then from (63), (72), (80) and (89) we find the following

C = B =
1
4η

sin


cos−1


1
2
tan2

[e−z/2h
√
k(cos(y/2h)− ν sin(y/2h))]

+
1
2
cot2[e−z/2h

√
k(cos(y/2h)− ν sin(y/2h))]


,

A′
=

1
4η


1
2
tan2

[e−z/2h
√
k(cos(y/2h)− ν sin(y/2h))]

+
1
2
cot2[e−z/2h

√
k(cos(y/2h)− ν sin(y/2h))]


k < 0,

(101)

q = −r =
8γ2 cot(2γ2ϖ) csc2(2γ2ϖ)
2 − cot4(γ2ϖ)− tan4(γ2ϖ)

. (102)

σ(ϖ) =
2η(8ηϖκγ 2

2 + ln(cos 2γ2ϖ)+ 4ηκγ2 sin 2γ2ϖ)
1 + 16η2κ2γ 2

2
. (103)

Then using Eqs. (66), (72), (80) − (72), (101)–(103) we find the new solution.

10. Conclusions

In this paper, we have investigated isothermal MS atmospheric models with one ignorable coordinate x of a Cartesian
coordinate system xyz in which the distributed current is either with jx = −α2A0e−2A/A0−z/h, once with jx = −(λA0/4h)×

(sinh Ã + sinh 2Ã)e−z/h, once with jx = −(λA0/4h) sin Ãe−z/h and jx = −(λA0/4h)× (sin Ã + sin 2Ã)e−z/h. The underlying
elliptic equation governing the force balance perpendicular to both B and ex reduced to the Liouville, sinh, double sinh, sine
and double sine–Poisson equations respectively. Themain interest of this paper is five classes of nonlinearMS solutions that
are obtained analytically by exploring the generalized tanh-function method and the Jacobi elliptic function, namely, the
solutions corresponding to the particular choice of the pressure profile, given in terms of the magnetic flux function A by
Eq. (15). Moreover the Bäcklund transformations are used to generate new classes of solutions.
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