期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:122
Asymptotic expansions for multivariate polynomial approximation
Article
Walz, G
关键词: asymptotic expansion;    Bernstein operator;    convergence acceleration;    extrapolation;    multivariate polynomial approximation;   
DOI  :  10.1016/S0377-0427(00)00358-7
来源: Elsevier
PDF
【 摘 要 】

In this paper the approximation of multivariate functions by (multivariate) Bernstein polynomials is considered; Building on recent work of Lai (J. Approx. Theory 70 (1992) 229-242), we can prove that the sequence of these Bernstein polynomials possesses an asymptotic expansion with respect to the index n. This generalizes a corresponding result due to Costabile et al. (BIT 36 (1996) 676-687) on univariate Bernstein polynomials, providing at the same time a new proof for it. After having shown the existence of an asymptotic expansion we can apply an extrapolation algorithm which accelerates the convergence of the Bernstein polynomials considerably; this leads to a new and very efficient method for polynomial approximation of multivariate functions. Numerical examples illustrate our approach. (C) 2000 Elsevier Science B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_S0377-0427(00)00358-7.pdf 96KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次