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Abstract

In this paper the approximation of multivariate functions by (multivariate) Bernstein polynomials is considered. Building
on recent work of Lai (J. Approx. Theory 70 (1992) 229–242), we can prove that the sequence of these Bernstein
polynomials possesses an asymptotic expansion with respect to the index n. This generalizes a corresponding result due
to Costabile et al. (BIT 36 (1996) 676–687) on univariate Bernstein polynomials, providing at the same time a new
proof for it. After having shown the existence of an asymptotic expansion we can apply an extrapolation algorithm which
accelerates the convergence of the Bernstein polynomials considerably; this leads to a new and very e�cient method for
polynomial approximation of multivariate functions. Numerical examples illustrate our approach. c© 2000 Elsevier Science
B.V. All rights reserved.

Keywords: Asymptotic expansion; Bernstein operator; Convergence acceleration; Extrapolation; Multivariate polynomial
approximation

1. Introduction and preliminaries

One of the fundamental questions in extrapolation theory is the following one: Can the convergence
of a given sequence be accelerated by a suitable extrapolation algorithm or not? The oldest and up
the present day most widespread criterion for a positive answer to this question is the existence of an
asymptotic expansion for the sequence to be accelerated (see the next section for exact de�nitions).
This is the reason why the terms asymptotic expansion and extrapolation are so deeply connected.

Now, the next question is: Where in Applied Analysis do exist sequences with this property? It is
the main reason of this paper, which is both a survey and a research paper, to convince the reader
that this is the case also in a �eld where this was not so well-known until now: Approximation of
multivariate functions by polynomials.
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We �rst shortly review what kind of asymptotic expansion we are looking at, and what the
corresponding extrapolation process looks like. For more details on these topics, see [7].

De�nition. Let there be given a sequence of real or complex numbers {�n} and natural numbers m
and N . The sequence {�n} is said to possess an asymptotic expansion of order m, if each �n for
n¿N can be written in the form

�n =
m∑
�=0

c�
n��

+ o(n−Re �m) = c0 +
m∑
�=1

c�
n��

+ o(n−Re �m) for n→ ∞: (1)

Here, the exponents {��} are real or complex numbers with the property
�0 = 0 and Re�� ¡Re��+1 for all � ∈ N0:

Moreover, if a sequence {�n} possesses an expansion of type (1) for all m ∈ N, then we say that
the expansion is of arbitrary order, and write

�n = c0 +
∑
�=1

c�
n��

(2)

for short.

Asymptotic expansions if the type (1) are sometimes also denoted in more detail as logarithmic
asymptotic expansions (see [5] or [7]). In this paper, we will use the abbrevatied notation asymptotic
expansion only.
It is well known (cf., e.g., [1,7]) that the basic idea of extrapolation applied to such sequences is to

compute the values of �n for several choices of n, say n=n0¡n1¡n2¡ · · ·, and to combine them in
order to obtain new sequences, which converge faster than the original ones. For many applications
it is convenient to choose the sequence {ni} not just anyhow, but as a geometric progression: With
natural numbers n0 and b, b¿2, we put

ni:=n0bi; i = 0; 1; 2; : : : : (3)

Then the extrapolation process reads as follows (cf. (4)):

Lemma 1. Let there be given a sequence {�n}; which possesses an asymptotic expansion of the
form (1); and a sequence of natural numbers {ni}; satisfying (3). Furthermore; choose some K ∈ N;
K6m and de�ne for k = 0; : : : ; K new sequences {y(k)i }i∈N through the process

y(0)i = �ni ; i = 0; 1; : : : ;

y(k)i =
b�k · y(k−1)i+1 − y(k−1)i

b�k − 1
{
k = 1; 2; : : : ; K;
i = 0; 1; : : : : (4)

Then each of the sequences {y(k)i }i∈N possesses an asymptotic expansion of the form

y(k)i = c0 +
m∑

�=k+1

c(k)�
n��i

+ o(n−Re �mi ) for ni → ∞ (5)

with coe�cients c(k)� independent of ni. In particular; each of the sequences {y(k)i } converges faster
to the limit c0 than its precedessor.
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So, the message is: If one has a convergent numerical process of whatever kind, say, a discretized
di�erential equation or a quadrature formula, one should always check whether the output of this
process has a asymptotic expansion. Experience says that this is indeed the case in much more
situations than commonly expected or known.
To illustrate and to support this remark, we consider in this paper the Bernstein polynomial

operators (or Bernstein polynomials), which are in Approximation Theory well known as a tool
for polynomial approximation of functions. It will be shown that the sequence of these operators
also possesses an asymptotic expansion, and thus that their order of convergence can be improved
considerably using extrapolation. In the univariate case, this result was proved quite recently in [2]
(see Theorem 2). As the main new contribution, we develop an anloguous result for the multivariate
case. Since the proof in [2] cannot be adopted for the multivariate case, we had to develop a new
approach, building on results published in [3]. This provides at the same time a new proof also for
the univariate case.

2. Asymptotic expansion for the Bernstein operator

We �rst brie
y review some results on the univariate case and then prove our main result
(Theorem 5) on the multivariate one.
The sequence of Bernstein operators

Bn(f; x):=
n∑
�=0

f
(
�
n

)
Bn;�(x); (6)

de�ned for any f ∈ C[0; 1], converges uniformly to f on [0; 1]. Here, Bn;�(x) denotes the (univariate)
Bernstein polynomial

Bn;�(x):=
(
n
�

)
x�(1− x)n−�:

However, as shown by Voronowskaja [6], we have

lim
n→∞ n (Bn(f; x)− f(x)) = x(1− x)2

f(2)(x) (7)

in each point x ∈ [0; 1] where f(2)(x) exists.
This means that already quadratic polynomials are not reproduced by Bn(f; ·), and that the order

of convergence is not better than O(1=n). Therefore, several attempts have been made to improve
this order of convergence, see [2] for an overview and some references.
In view of asymptotic expansion and extrapolation theory, a big step was done recently in [2],

who established the asymptotic expansion for the Bernstein operator Bn. Their main result can be
stated as follows:

Theorem 2. Let f ∈ C2k[0; 1] with some k ∈ N. Then the sequence {Bn(f; x)}; de�ned in (6);
possesses an asymptotic expansion of the form

Bn(f; x) = f(x) +
k∑
�=1

c�(x)
n�

+ o(n−k) for n→ ∞:
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It is our goal to develop an analoguous result for the multivariate case.
However, we do not generalize the proof given in [2], which could by the way be shortened

considerably by using the asymptotic results already to be found in [4]. Instead, we will make
use of some asymptotic relations for multivariate Bernstein polynomials, established quite recently
in [3].
Let v0; : : : ; vs be (s+1) distinct points in Rs, such that the volume of the s-simplex T :=〈v0; : : : ; vs〉

is positive. For each point x ∈ T , we denote by (�0; : : : ; �s) the barycentric coordinates of x w.r.t. T .
It is well known that any polynomial pn(x) of total degree n can be expressed by using the basic

functions

B�(�):=
|�|!
�!
��; � ∈ Ns+1

0 with |�|= n
in the form

pn(x) =
∑
|�|=n
�∈Ns+10

c�B�(�); x ∈ T:

Here, as usual, for any � = (�0; : : : ; �s) ∈ Ns+1
0 , we set |�|= �0 + · · ·+ �s and �! = �0! · · · �s!. Also,

it is �� = ��00 · · · ��ss .
For each � ∈ Ns+1

0 , denote by x� the point

x�:=
1
|�|

s∑
i=0

�ivi:

We consider the approximation of a given function f ∈ C(T ) by the multivariate Bernstein polyno-
mial

Bn(f; x):=
∑
|�|=n
�∈Ns+10

f(x�)B�(�): (8)

As in [3], we introduce the auxiliary polynomials

Sn
 (x) = n
|
| ∑

|�|=n
�∈Ns+10

(x� − x)
B�(�)

for 
 ∈ Ns
0. The following results, which we will make use of below, were proved in [3].

Theorem 3. The polynomials Sn
 possess the explicit representations

Sn
 ≡ 0 for |
|61;

Sn
 (x) = n
s∑
j=0

�j(vj − x)
 for |
|= 2;

and

Sn
 (x) =
|
|−2∑
�=1

∑
�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

n(n− 1) · · · (n− � + 1)
�∏
i=1


 s∑
j=0

�j(vj − x)�i

 for |
|¿3:
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Theorem 4. For k ∈ N and f ∈ C2k(T ); we have

lim
n→∞ nk


Bn(f; x)− f(x)−

∑

∈Ns0

|
|62k−1

1

!
Sn
 (x)
n|
|

D
f(x)




=
∑

∈Ns0
|
|=2k

1

!

∑
�1 ;:::;�k∈Ns0
�1+···+�k=

|�i|=2; i=1;:::; k

k∏
i=1


 s∑
j=0

�j(vj − x)�i

D
f(x): (9)

Building on these auxiliary results, we can now state and prove our main theorem. Note that
although Theorem 4 is a deep and nice result on the asymptotic behavior of the multivariate Bernstein
approximants, it does still not yet prove the asymptotic expansion. To do this, a careful analysis of
the coe�cient functions in (9) is necessary.

Theorem 5. Let f ∈ C2k(T ) with some k ∈ N. Then the sequence of Bernstein approximants
{Bn(f; x)}; de�ned in (8); possesses an asymptotic expansion of the form

Bn(f; x) = f(x) +
k∑
�=1

c�(x)
n�

+ o(n−k) for n→ ∞: (10)

The coe�cient functions c�(x) can be given explicitly; we have

c�(x) =
∑

∈Ns0

�+16|
|62�

1

!

b|
|=2c∑
�=|
|−�

�|
|−�;�
∑

�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i

 (11)

with recursively computable numbers �i;�; see (14) below.

Proof. We use the following result, to be found for example in [7].
A sequence {Bn} possesses an asymptotic expansion of the desired form, if and only if for

m= 1; : : : ; k,

lim
n→∞ nm

{
Bn − f −

m−1∑
�=1

c�
n�

}
= : cm (12)

exists and is di�erent from zero. (Here and below, we set empty sums equal to zero.)
From (12), it is clear that the results due to Lai, as quoted above, are a big step towards the

proof of our Theorem, but as be seen below, there is still something to do.
We �rst have to make a further analysis of the functions Sn
 . It is clear that if we have points

�1; : : : ; �� ∈ Ns
0 with |�i|¿2; i = 1; : : : ; �, and if �¿ |
|=2, then

|�1 + · · ·+ ��|¿ |
|:
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This means that

Sn
 (x)
n|
|

=
|
|−2∑
�=1

n(n− 1) · · · (n− � + 1)
n|
|

∑
�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i



=
b|
|=2c∑
�=1

n(n− 1) · · · (n− � + 1)
n|
|

∑
�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i

 (13)

with ⌊ |
|
2

⌋
=

{ |
|
2 ; |
| even;
|
|−1
2 ; |
| odd:

Next, we observe that the expression

n(n− 1) · · · (n− � + 1)
is a polynomial of exact degree � in n, say

n(n− 1) · · · (n− � + 1) =
�∑
i=1

�i;�ni;

with coe�cients �i;�, which can be computed by the recursion

�1;1 = 1; �i;1 = 0; i 6= 1;
and

�i;�+1:=�i−1; � − ��i;�; �¿1; 16i6� + 1: (14)

In particular,

��;� = 1 and �1; � = (−1)�−1(� − 1)! (15)

for all �.
Together with (13), it follows that

Sn
 (x)
n|
|

=
b|
|=2c∑
�=1

�∑
i=1

�i;�
n|
|−i

∑
�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i

 : (16)

Rearranging this according to powers of n, we obtain

Sn
 (x)
n|
|

=
|
|−1∑

l=b|
|+1=2c

�l;
(x)
nl

(17)

with coe�cient functions �l;
, which do not depend on n.



G. Walz / Journal of Computational and Applied Mathematics 122 (2000) 317–328 323

For later use, we note that for |
| even, say |
|=2�, the coe�cient of the lowest power of n; ��; 
,
can be given explicitly: From (16), we deduce that

��;
(x) = ��;�
∑

�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i



=
∑

�1 ;:::;��∈Ns0
�1+···+��=2�
|�i|=2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i

 : (18)

From (17), it follows that the sum over all these expressions itself is of the form

∑

∈Ns0
|
|62k−1

1

!
Sn
 (x)
n|
|

D
f(x) =
d1; k(x)
n

+
d2; k(x)
n2

+ · · ·+ dk;k(x)
nk

+O(n−(k+1)): (19)

We now make the

Claim. For all �6k; the coe�cient functions dj;� in (19) satisfy

dj;�(x) = dj;�−1(x) j = 1; : : : ; �− 2
and

d�−1; �(x) = d�−1; �−1(x) +
∑


∈Ns0
|
|=2�−2

��−1; 
(x) (20)

with ��−1;2�−1 from (17).

Proof of Claim. The proof is by induction. For k = 1, there is nothing to show, while for k = 2,
the only relation to prove is

d1;2(x) = d1;1(x) +
∑

∈Ns0
|
|=2

�1; 
(x):

But this is true, since d1;1 = 0.
Now we assume that the claim is true for �, and prove it for �+ 1.
From (17) and (19) and the induction hypothesis,

∑

∈Ns0
|
|62�+1

1

!
Sn

n|
|
D
f(x)
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=
d1; �(x)
n

+ · · ·+ d�;�(x)
n�

+O(n−(�+1)) +
2�−1∑
l=�

∑

∈Ns0
|
|=2�

�l; 
(x)
nl

+
2�∑

l=�+1

∑

∈Ns0
|
|=2�+1

�l;
(x)
nl

=
d1; �+1(x)

n
+ · · ·+ d�;�+1(x)

n�
+
d�+1; �+1(x)
n�+1

+ O(n−(�+2))

and comparing coe�cients on both sides of this equation proves the claim.
We now de�ne, for �= 1; : : : ; k, coe�cient functions c̃�(x) by

c̃�(x):=d�;�(x) +
∑

∈Ns0
|
|=2�

1

!
��;
(x)D
f(x): (21)

We now claim: For m= 1; : : : ; k, it is

lim
n→∞ nm

{
Bn(f; x)− f(x)−

m−1∑
�=1

c̃�(x)
n�

}
= c̃m(x): (22)

For m= 1, this was established in [3] as a corollary to Theorem 3.
Now let 26m6k. From (19) in connection with Theorem 4, we get

lim
n→∞ nm

(
Bn(f; x)− f(x)−

(
d1;m(x)
n

+ · · ·+ dm;m(x)
nm

))

=
∑

∈Ns0
|
|=2m

1

!

∑
�1 ;:::;�m∈Ns0
�1+···+�m=

|�i|¿2; i=1;:::;m

m∏
i=1


 s∑
j=0

�j(vj − x)�i

D
f(x):

Together with (21), (20) and (18), this gives

lim
n→∞ nm

(
Bn(f; x)− f(x)−

m−1∑
�=1

c̃�(x)
n�

− dm;m(x)
nm

)
=

∑

∈Ns0
|
|=2m

1

!
��;
(x)D
f(x);

and so, using (21) once more, (22) is proved.
This also completes the proof of the existence of the asymptotic expansion, as stated in (10).
To verify (11) (i.e., to prove that c� = c̃�), we once again analyse the sum in (19). Using (16)

gives

∑

∈Ns0
|
|62�−1

1

!

b |
|2 c∑
�=1

�∑
i=1

�i;�
n|
|−i

∑
�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i

D
f(x):
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Table 1a
Errors in approximating f1

0:2083e(00)
0:1042e(−1)

0:9896e(−1) 0:5208e(−2)
0:6510e(−2) 0:0000e(1)

0:4622e(−1) 0:6510e(−3)
0:2116e(−2) 0:0000e(1)

0:2205e(−1) 0:8138e(−4)
0:5900e(−3) 0:0000e(1)

0:1073e(−1) 0:1017e(−4)
0:1551e(−3) 0:0000e(1)

0:5288e(−2) 0:1272e(−5)
0:3974e(−4)

0:2624e(−2)

Table 1b
Quotients of the entries of Table 1a

2:105
1:600

2:141 8:000
3:077

2:096 8:000
3:586

2:055 8:000
3:803

2:029 8:000
3:904

2:015 8:000
3:953

2:008

Collecting in this expression all terms containing 1=n� shows that the coe�cient of this power of
n is

∑

∈Ns0
|
|62�−1

1

!

b |
|2 c∑
�=1

�|
|−�;�
∑

�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i

D
f(x):

Since �i;� = 0 for i60 and i¿�, this is equal to

∑

∈Ns0
�+16|
|62�−1

1

!

b |
|2 c∑
�=|
|−�

�|
|−�;�
∑

�1 ;:::;��∈Ns0
�1+···+��=

|�i|¿2; i=1;:::;�

�∏
i=1


 s∑
j=0

�j(vj − x)�i

D
f(x):

Now using once more relation (18) completes the proof of Theorem 5.
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Table 2a
Errors in approximating f2

0:1097e(00)
0:2113e(−2)

0:5378e(−1) 0:1500e(−4)
0:5396e(−3) 0:2869e(−6)

0:2662e(−1) 0:1624e(−5) 0:1575e(−9)
0:1361e(−3) 0:1779e(−7)

0:1324e(−1) 0:1875e(−6) 0:7047e(−11)
0:3417e(−4) 0:1105e(−8)

0:6603e(−2) 0:2247e(−7) 0:2520e(−12)
0:8559e(−5) 0:6883e(−10)

0:3297e(−2) 0:2748e(−8) 0:8359e(−14)
0:2142e(−5) 0:4294e(−11)

0:1648e(−2) 0:3398e(−9) 0:2687e(−15)
0:5357e(−6) 0:2681e(−12)

0:8235e(−3) 0:4224e(−10)
0:1340e(−6)

0:4117e(−3)

Table 2b
Quotients of the entries of Table 2a

2:039
3:917

2:020 9:237
3:964 16:133

2:010 8:664 22:345
3:984 16:096

2:005 8:344 27:966
3:992 16:055

2:003 8:175 30:146
3:996 16:029

2:001 8:088 31:111
3:998 16:015

2:001 8:044
3:999

2:000

3. Numerical results

Having proved the existence of the asymptotic expansion (10), we can now apply the extrapolation
process (4) to the sequence of Bernstein approximants. It follows from (10) that �k = k for all k.
In order to illustrate the numerical e�ect of extrapolation, we show in this section a small selection
of a number of numerical tests that have been examined, and all of which showed the asymptotic
behaviour that was predicted.
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The results shown below were obtained for s= 2 on the triangle T with vertices

v0 =
(
1
0

)
; v1 =

(
0
1

)
and v2 =

(
0
2

)

in euclidean coordinates. We computed the absolute values of the error functions in the barycenter
of T , the point

� = 1
3(v

0 + v1 + v2):

As a �rst test, we applied the method to the bivariate polynomial

f1(x; y):=xy3:

The errors of the approximations y(k)i of the true value f1(�) = 1
3 , computed by extrapolation with

K=3, n0=2, and i=0; : : : ; 6, are shown in Table 1a. As expected, the entries of the third column are
identically zero, since f1 is a polynomial of total degree 4, and therefore the third extrapolation step
already gives the exact result. Note in this connection that the Bernstein approximants themselves
do not reproduce the polynomial f1 exactly, however high their degree might be.
As a second example, we consider approximation of the function

f2(x; y):=exp(x + y)

and again compare our numerical approximations with the true value of f2 in �, which is exp(43). This
time, the errors (in absolute value) of the approximations computed by our method with K=4; n0=4,
and i = 0; : : : ; 8 are shown, see Table 2a.
In Tables 1b and 2b, �nally, we have the quotients of two subsequent values in the columns of

Table 1a (resp. Table 2a). As predicted, the entries of the kth column (starting to count with k=0)
converge to 2k+1.

4. Conclusion

In contrast to the univariate case, the approximation of multivariate functions by polynomials is
still a very di�cult task, and many problems are open. Up to now, there exist very few numeri-
cal methods for the computation of good polynomial approximations. Therefore, we are convinced
that the approach developed in this paper provides a very e�cient new method for polynomial
approximation of multivariate functions.
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