期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:333
A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems
Article
Karaaslan, Mehmet Fatih1  Celiker, Fatih2  Kurulay, Muhammet3 
[1] Yildiz Tech Univ, Dept Stat, Istanbul, Turkey
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Yildiz Tech Univ, Dept Math Engn, Istanbul, Turkey
关键词: Hybridizable discontinuous Galerkin methods;    Fractional boundary value problems;    Caputo derivative;   
DOI  :  10.1016/j.cam.2017.09.043
来源: Elsevier
PDF
【 摘 要 】

In this paper, we present a hybridizable discontinuous Galerkin (HDG) method for solving a class of fractional boundary value problems involving Caputo derivatives. The HDG methods have the computational advantage of eliminating all internal degrees of freedom and the only globally coupled unknowns are those at the element interfaces. Furthermore, the global stiffness matrix is tridiagonal, symmetric, and positive definite. Internal degrees of freedom are recovered at an element-by-element postprocessing step. We carry out a series of numerical experiments to ascertain the performance of the proposed method. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2017_09_043.pdf 409KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次