期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:374
A note on the adaptive numerical solution of a Riemann-Liouville space-fractional Kawarada problem
Article
Zhu, Lin1  Sheng, Qin2,3 
[1] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Ningxia, Peoples R China
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
[3] Baylor Univ, Ctr Astrophys Space Phys & Engn Res, Waco, TX 76798 USA
关键词: Fractional Kawarada problem;    Positivity;    Monotonicity;    Critical length;    Quenching time;    Quenching location;   
DOI  :  10.1016/j.cam.2020.112714
来源: Elsevier
PDF
【 摘 要 】

This paper concerns the approximation and numerical solution of a singular fractional reaction-diffusion problem. A Riemann-Liouville space-fractional derivative oriented Laplacian is incorporated. While our spatial discretization is fulfilled though combined standard and shifted Grunwald formulas, temporal integration is accomplished via an implicit adaptive Crank-Nicolson scheme. It is proven that under proper constraints of the spatial and temporal discretization parameters, the numerical procedure implemented is positive, monotone and numerically stable. Simulation experiments are given to validate correlations between the fractional derivative and critical values including critical lengths, quenching times and locations. (C) 2020 Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_112714.pdf 812KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次