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a b s t r a c t

This paper concerns the approximation and numerical solution of a singular fractional
reaction–diffusion problem. A Riemann–Liouville space-fractional derivative oriented
Laplacian is incorporated. While our spatial discretization is fulfilled though combined
standard and shifted Grünwald formulas, temporal integration is accomplished via an
implicit adaptive Crank–Nicolson scheme. It is proven that under proper constraints
of the spatial and temporal discretization parameters, the numerical procedure imple-
mented is positive, monotone and numerically stable. Simulation experiments are given
to validate correlations between the fractional derivative and critical values including
critical lengths, quenching times and locations.

© 2020 Published by Elsevier B.V.

1. Introduction

Nonlinear reaction–diffusion equations of the quenching type have been essential to simulation of thermal phenomena
such as fuel combustion, energy transformation, cell multiplication and oil pipeline decay preventions [1–5]. Different from
conventional blow-up problems, solutions of quenching partial differential equation problems remain to be bounded,
while their rates of changes tend to be unbounded as quenching-combustion takes place. This introduces significant
amounts of difficulties in modeling and computations of the quenching solutions [2,6–8].

To commence, we denote Ωa = (0, a). Consider the following typical quenching-combustion problem:

ut (x, t) = uxx(x, t) + f (u), x ∈ Ωa, 0 < t < T , (1.1)
u(0, t) = u(a, t) = 0, 0 ≤ t < T , (1.2)
u(x, 0) = φ(x), x ∈ Ωa, (1.3)

where f (u) = 1/(1 − u)θ , θ > 0, φ ∈ C(Ωa) with 0 ≤ φ ≪ 1 for T ≤ ∞. This spatially localized model describes a
steady combustion process in which two gases meet in a gap between porous walls at distance a apart. Fuel diffusions
on one wall. On the other hand, oxidant is at the other side dying out towards each wall and there is a reaction zone
between two walls. Here t is the time, x is the distance between two walls and u is the temperature of uniform scaling [9].
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Further, θ is the physical property index of the gas involved. In 1975, Kawarada discovered that for θ = 1, there exists a
critical number a⋆ > 0 such that if a < a⋆, the solution of Eqs. (1.1)–(1.3) exists globally [10]. Otherwise, there exists a
finite time T ⋆a such that limt→T⋆−a

supx u(x, t) = 1. Herewith a⋆ is referred to as the critical length of domain and T ⋆a is the
critical time. It has also been reported that the problem (1.1)–(1.3) can be nonlocalized in electrostatic applications [11].
The solution of (1.1)–(1.3) is called to quench at T ⋆a in the latter case [1,10].

To predict aforementioned quenching criterion, location of initial quench and influence of stochastic interferences
has been a key to not only a better understanding of the thermal phenomena, but also designing and manufacturing
of highly effective combustion processes in applications. Researchers have initially focused on theoretical estimates of
critical values of different quenching processes [5,6,10]. Karawada observed that a⋆ > 2

√
2 [10]. Later, Acker and Walter

improved this to a⋆ ≈ 1.5303 [1]. Most existing results are acquired through discussions via reduced differential equations
uxx = −f (u), 0 < x < a, together with (1.2). Numerical methods such as boundary element and finite difference methods
are popular for the numerical solution of (1.1)–(1.3) [4,6]. The computations, however, become significantly complicated
as higher dimensional problems are concerned. To improve the accuracy and efficiency, adaptive strategies are introduced
used for quenching problems [12]. Sophisticated splitting and domain decomposition methods are also considered [2,13].
To reduce the algorithmic complexity, methods of lines, or semidiscretizations, become a general rule in many numerical
approaches. But this introduces other serious concerns such as the numerical instability. To break the barrier and obtain
more accurate, reliable and straightforward computational strategies, applications of naturally endorsed and spatially
global Kawarada model equations have become necessary.

Fractional partial differential equations (FPDEs) are generalizations of integral partial differential equations. The global
feature of FPDEs has made them extremely important to applications where global effects are not neglectable. Natural
phenomena targeted include heat diffusion, wave propagation, quantum mechanics, financial engineering, generic mem-
ory designs, electrochemistry and materials with complex rheological properties [14]. In this paper, we are particularly
interested in FPDEs such as that when the Laplacian in (1.1) is replaced by the nonlocal α-fractional derivative for 1 <
α ≤ 2. A few interesting theoretical and numerical explorations of such problems can be found in recent publications. For
instance, Padgett considered possible quenching solutions to Kawarada problems when Caputo time-fractional derivatives
are utilized [7]. Beauregard investigated quenching solutions of one-dimensional degenerate Kawarada problems equipped
with left and right Riemann–Liouville fractional Laplacians [9]. It is found that fractional quenching models may preserve
key global properties of the combustion environments and thus provide more realistic formulations for industrial
simulations [7,15]. It has also been observed that orders of the fractional derivative have little influences on quenching
locations while the degeneracy and transport coefficients play a significant role in the locations and quenching times.
In our study, we will primarily focus on one-sided spatially fractional Kawarada problems and computations. Possible
connections between orders of the fractional derivatives and critical values such as critical length, quenching time and
quenching location will be explored.

The rest of the paper will be organized as follows. In Section 2, the spatially fractional model problem will be
introduced and discussed. The fractional derivative is then approximated via a weighted Grünwald formula with a
second order accuracy in the space [16]. The space fractional quenching singularity incurred will be handled through
the semidiscretization and proper fractional approximations. Section 3 is devoted to the positivity and monotonicity of
the numerical solution sequence generated by the semi-adaptive finite difference scheme. Rigorous numerical analysis
and proof will be given on the stability of the fully discretized system. Numerical experiments will be presented in
Section 4 to illustrate the solution of our fractional modeling problem. Important quenching properties related to our
one dimensional fractional Kawarada equations will be demonstrated. Finally, in Section 5, conclusions will be given and
highlighted. Continuing explorations will also be planned.

2. Fractional model and semi-adaptive scheme

Let 1 < α ≤ 2. For T ≤ ∞, we consider the following one-dimensional αth order nonlinear fractional initial–boundary
value problem:

∂u(x, t)
∂t

= d(x, t)
∂αu(x, t)
∂xα

+ f (u), x ∈ Ωa, 0 < t < T , (2.1)

u(0, t) = u(a, t) = 0, 0 ≤ t < T , (2.2)
u(x, 0) = φ(x), x ∈ Ωa, (2.3)

where f (u) = 1/(1 − u), d(x, t) > 0 for x ∈ Ωa, 0 < t < T . The problem provides a profound mathematical model for
several physical and natural applications [17,18].

Let x ∈ Ωa and h = x/M for M ∈ Z+. We have following standard and shifted Grünwald formulas for the fractional
derivative in (2.1), respectively [18]:

∂αu(x, t)
∂xα

= lim
h→0+

1
hα

M∑
m=0

gmu(x − mh, t);
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∂αu(x, t)
∂xα

= lim
h→0+

1
hα

M∑
m=0

gmu(x − (m − 1)h, t),

where

gm =
Γ (m − α)

Γ (−α)Γ (m + 1)
= (−1)m

(
α

m

)
, m = 0, 1, . . . ,M.

It is readily to verify that⎧⎪⎨⎪⎩
g0 = 1, − g1 = α > 0, gm ≥ gm+1 ≥ 0, m ≥ 2;
M∑

m=0

gm ≤ 0, M ∈ Z+
;

∞∑
m=0

gm = 0. (2.4)

Now, let K ∈ Z+, K ≫ 1, and h = a/(K + 1). Denoting x0 = 0, xK+1 = a, we consider the mesh region

Ωa,h = {xk, | xk = xk−1 + h, k = 1, 2, . . . , K }.

On the other hand, we define Tτ = {tn | tn =
∑n

ℓ=1 τℓ, n = 0, 1, . . . ,N}, where 1 ≫ τn > 0 are variable temporal steps
to be determined adaptively, and N is the maximal number of steps to reach. We further denote uk = u(xk, t), dk =

d(xk, t), fk = f (uk), k = 0, 1, . . . , K + 1. A fractional CFL number may be defined as µα = τ/hα , τ can be the average of
temporal steps used [19].

Let uk be an approximation of the exact solution of (2.1)–(2.3) at (xk, t) ∈ Ωa,h × T∆t . It is shown in [16] that

∂αu(xk, t)
∂xα

=
1
hα

⎡⎣(
1 −

α

2

) k∑
j=0

gjuk−j +
α

2

k+1∑
j=0

gjuk−j+1

⎤⎦ + O(h2), h → 0+. (2.5)

It has been proven that (2.5) coincides with the standard second-order central difference approximation of the second
derivative when α = 2 [18].

An application of (2.5) to (2.1) yields our semi-discretized differential system

(ut )k =
dk
hα

⎡⎣(
1 −

α

2

) k∑
j=0

gjuk−j +
α

2

k+1∑
j=0

gjuk−j+1

⎤⎦ + fk, k = 1, 2, . . . , K .

The above together with conditions (2.2), (2.3) can be conveniently expressed as

vt = Cv + f (v), 0 < t < T ; v(0) = v0, (2.6)

where v = (u1, u2, . . . , uK )⊺, f = (f1, f2, . . . , fK )⊺ ∈ RK and C = (cij) ∈ RK×K for which

cij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

di
hα

[(
1 −

α

2

)
g0 +

α

2
g1

]
, i = j,

di
hα

[(
1 −

α

2

)
gi−j +

α

2
gi−j+1

]
, i ≤ j,

diαg0
2hα

, j = i + 1,

0, otherwise.

A formal solution of (2.6) takes the form

v(t + τ ) = eτCv(t) +

∫ t+τ

t
e(t+τ−ξ )C f (v(ξ ))dξ, t, τ ≥ 0.

A trapezoidal rule for the integral leads to following approximation of the above:

v(t + τ ) = eτCv(t) +
τ

2

[
f (v(t + τ )) + eτC f (v(t))

]
+ O(τ 2), t ≥ 0, τ → 0+. (2.7)

The matrix exponential operator can then be handled via an A-stable [1/1] Padé approximant, this is,

eτC =

(
I −

τ

2
C
)−1 (

I +
τ

2
C
)

+ O(τ 2), τ → 0+. (2.8)

Thus, from (2.7) and (2.8) we obtain the following fully discretized second-order scheme,

vn =

(
I −

τn

2
C
)−1 (

I +
τn

2
C
)(
vn−1 +

τn

2
fn−1

)
+
τn

2
fn, n = 1, 2, . . . ,N, (2.9)

v0 = (u1(0), u2(0), . . . , uK (0))⊺. (2.10)
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where functions ψℓ = ψ(tℓ), tℓ ∈ Tτ . We may further employ an Euler method for evaluating fn ≈ f (vn−1 + τn(Cvn−1 +

fn−1)) in a linearization procedure [4]. Therefore, the overall truncation error of our scheme (2.9), (2.10) should be
O(h2

+ τn). In the situation for maintaining a constant or a near constant CFL number, we would expect the error to
be at O(hα).

It has been shown that quenching solutions are extremely sensitive over time due to their distinctive singularities
[3,4,20]. Similar to semi-adaptive procedures considered in [2,13,21], we adopt following arc-length monitor function
of ut :

m(ut , t) = max
0≤x≤a

√
1 + u2

tt , t ≥ 0.

Recall that τn+1 = tn+1 − tn, n = 1, 2, . . . ,N − 1, are variable temporal steps. They satisfy the following quadratic
formulation,

τ 2n+1 =

1 + max0≤x≤a

(
un−1/2
tt

)2

1 + max0≤x≤a

(
un+1/2
tt

)2 τ
2
n , n = 1, 2, . . . ,N − 1. (2.11)

Once τ0 > 0 is chosen, the subsequently adaptive temporal steps can be approximately calculated through (2.11) and
under proper smoothness constraints [4,9,12].

3. Analysis of positivity, monotonicity and stability

3.1. Solution positivity and monotonicity

Kawarada problems (1.1)–(1.3) and (2.1)–(2.3) are known for their rich properties related to multi-physics applications
especially in fuel combustions and cell biology (see [1,3,4,8] and the references therein for further details). It is
anticipated that the sequence of numerical solution, {vn}Nn=0, generated by (2.9), (2.10) must be positive and monotonically
increasing [2,9,13,15]. Let us define µα,n = maxn(τn)/hα , for n = 1, 2, . . . .

Theorem 3.1. If
√
17−1
2 ≤ α ≤ 2, then I −

τn
2 C is strictly diagonally dominant, monotone and inverse positive.

Proof. Let A = I −
τn
2 C . We consider its diagonal element

akk = 1 −
τndk
2hα

[(
1 −

α

2

)
g0 +

α

2
g1

]
= 1 +

τndk
2hα

[
α2

2
+
α

2
− 1

]
.

If 1 < α < 2, then α2

2 +
α
2 − 1 > 0. Thus, akk > 0. Recall (2.4) and the fact that 1 < α < 2, we have

α
2 gk−j+1 +

(
1 −

α
2

)
gk−j > 0 for k < j − 2. Further, to ensure α

2 g2 +
(
1 −

α
2

)
g1 > 0, similar to that in [16], a sufficient

condition must be
√
17 − 1
2

≤ α ≤ 2. (3.1)

Now, we consider absolute sums of off-diagonal elements of A. To this end,

ri =

K∑
j=1,j̸=i

⏐⏐aij⏐⏐ =
τndi
2hα

{
i−1∑
k=1

[α
2
gi−k+1 +

(
1 −

α

2

)
gi−k

]
+
α

2
g0

}

=
τndi
2hα

[α
2
(gi + gi−1 + · · · + g2 + g0)+

(
1 −

α

2

)
(gi−1 + · · · + g1)

]
≤
τndi
2hα

[α
2

× (−g1) +

(
1 −

α

2

)
× (−g0)

]
=
τndi
2hα

(
α2

2
+
α

2
− 1

)
, i = 1, 2, . . . , K .

Since

ri =

K∑
j=1,j̸=i

⏐⏐aij⏐⏐ < τndi
2hα

(
α2

2
+
α

2
− 1

)
+ 1 = aii, i = 1, 2, . . . , K ,

Therefore A is strictly diagonally dominant and thus invertible.
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Moreover, based on particular features of A, we have the following properties.

1. α
2 g0 > 0,

(
1 −

α
2

)
gi−1 +

α
2 gi > 0, i = 1, . . . , K −1, since

(
1 −

α
2

)
g0 +

α
2 g1 = −

(
α2

2 +
α
2 − 1

)
< 0. In other words,

all nonzero diagonal entries of A are positive, while all nontrivial off-diagonal entries of the matrix are negative.
2. We have

∑K
j=1 aij = 1−

τndi
2hα

[(
1 −

α
2

)
(g0 + g1 + · · · + gi−1) +

α
2 (gi + gi−1 + · · · + g0)

]
, i = 1, 2, . . . , K − 1. Further,

recall (2.4). We have
∑i−1

j=0 gj ≤ 0 and
∑i

j=0 gj ≤ 0. It follows subsequently that
∑K

j=1 aij > 0 for i = 1, 2, . . . , K −1.
As i = K , the same result can be obtained for

∑i
j=1 gj ≤ −1.

Thus, A is monotone and inversely positive following the weak-row sum criterion [22]. This completes our proof. □

Theorem 3.2. If

µα,n <
1

2dmax
,

√
17 − 1
2

≤ α ≤ 2, (3.2)

where dmax = max1≤k≤K dk, then I +
τn
2 C is positive and nonsingular.

Proof. Let B = I +
τn
2 C . Recall (2.4) and (3.2). Off-diagonal entries of B must be positive. Now, we consider the diagonal

elements of B,

bii = 1 +
τndi
2hα

[(
1 −

α

2

)
g0 +

α

2
g1

]
= 1 −

τndi
2hα

(
α2

2
+
α

2
− 1

)
≥ 1 −

τndi
hα
, i = 1, 2, . . . , K .

According to (3.2), we must have τndk
hα < 1. Therefore bii > 0. Again, recall (2.4) and the fact that 1 < α < 2, we have

gi−j+1
α
2 + gi−j

(
1 −

α
2

)
> 0 for any i < j − 2 ≤ K − 2. Now, we observe that g2 α2 + g1

(
1 −

α
2

)
> 0 because of (3.1).

Therefore aij > 0 for i, j = 1, . . . , K . This ensures the positivity of B. Then we consider the sup-num of τn2 C , that is,τn
2
C


∞

= max
i

⎧⎨⎩τndi2hα

K∑
j=1

⏐⏐Cij
⏐⏐⎫⎬⎭

= max
i

{
τndi
2hα

i−1∑
k=1

[α
2
gi−k+1 +

(
1 −

α

2

)
gi−k

]
+
α

2
g0 −

[α
2
g1 + (1 −

α

2
)g0

]}

≤
maxn(τn)dmax

hα

(
α2

2
+
α

2
− 1

)
.

It is clear that α2

2 +
α
2 − 2 > 0 if

√
17−1
2 ≤ α ≤ 2. Further, if µα,n < 1/(2dmax), then τn

2 ∥C∥∞ < 1. Therefore B is
nonsingular [22]. □

Lemma 3.1. Let v0 = 0 and τ1 ≥ 0 be a beginning temporal step. If (3.2) holds and τ1 < σ−1, where σ = max(f (τ1f0)), then
v1 > v0 and ∥v1∥∞ < 1.

Proof. Utilizing (2.9), we find that

v1 =

(
I −

τ1

2
C
)−1 (

I +
τ1

2
C
)(
v0 +

τ1

2
f0
)

+
τ1

2
f1

=
τ1

2

[(
I −

τ1

2
C
)−1 (

I +
τ1

2
C
)
f0 + f (τ1f0)

]
.

Thus, v1 > v0 = 0 due to Theorems 3.1 and 3.2. We next show that ∥v1∥∞ < 1. To this end, we define X = (1, 1, . . . , 1)⊺
and consider the difference

v1 − X =

(
I −

τ1

2
C
)−1 [τ1

2

(
I +

τ1

2
C
)
f0 +

τ1

2

(
I −

τ1

2
C
)
f (τ1f0) −

(
I −

τ1

2
C
)
X
]
.

Now, define

W1 =
τ1

2

(
I +

τ1

2
C
)
f0 +

τ1

2

(
I −

τ1

2
C
)
f (τ1f0), W2 = −

(
I −

τ1

2
C
)
X,

W = W1 + W2.

In this case v1 − X =
(
I −

τ1
2 C

)−1 W . Since (3.2) holds, the matrix I −
τ1
2 C is inverse positive. In addition

W1 =
τ1

2

(
I +

τ1

2
C
)
f0 +

τ1

2

(
I −

τ1

2
C
)
f (τ1f0)

≤
τ1

2

[(
I +

τ1

2
C
)

+

(
I −

τ1

2
C
)]

f (τ1f0) = τ1f (τ1f0). (3.3)



6 L. Zhu and Q. Sheng / Journal of Computational and Applied Mathematics 374 (2020) 112714

Because
∑i

j=0 gj ≤
∑

∞

j=0 gj = 0 due to (2.4), we have CX ≤ 0. Hence

W2 = −X +
τ1

2
CX ≤ −X .

Combining the above with (3.3), we acquire that W ≤ τ1f (τ1f0) − X < τ1 max(f (τ1f0)) − 1 = τ1σ − 1. If τ1 < σ−1, we
have W < 0 which completes our proof. □

Lemma 3.2. If (3.2) holds for any temporal step τn that is sufficiently small, and 0 ≤ vn−1 < 1 such that Cvn−1 + fn−1 > 0
then solution vectors of (2.9), {vn}∞n=0,

1. form a monotonically increasing sequence and
2. have Cvn + fn > 0, n ≥ 0.

Proof. First, based on Lemma 3.1, we may claim that v1 > v0. We then let fn in (2.9) be approximated through an Euler
formula, that is, fn = fn−1 + τnM(Cvn−1 + fn−1) + O(τ 2n ), n ≥ 1, Recalling (2.9), we observe that

vn − vn−1 =

(
I −

τn

2
C
)−1 [(

I +
τn

2
C
)(
vn−1 +

τn

2
fn−1

)
+
τn

2

(
I −

τn

2
C
)
fn −

(
I −

τn

2
C
)
vn−1

]
=

(
I −

τn

2
C
)−1

[
τnCvn−1 +

τn

2
fn−1 +

τn

2
fn +

τ 2n

4
C(fn−1 − fn)

]
≥ τn

(
I −

τn

2
C
)−1 [

Cvn−1 + fn−1 −
τn

4
C(fn − fn−1)

]
, n > 1,

due to the property fn > fn−1. Based on Taylor’s theorem [23], for n > 1,

vn − vn−1 ≥ τn

(
I −

τn

2
C
)−1

[
(Cvn−1 + fn−1) −

Mτ 2n
4

C(Cvn−1 + fn−1)
]
, (3.4)

where M is the positive diagonal Jacobian matrix of f (v) evaluated at some mean value point. Thus, vn > vn−1 if τn is
sufficiently small.

On the other hand, it is evident that

Cvn + fn = fn − fn−1 + Cvn−1 + fn−1 + C(vn − vn−1)
= fn − fn−1 + Cvn−1 + fn−1

+ C
[(

I −
τn

2
C
)−1 (

I +
τn

2
C
)(
vn−1 +

τn

2
fn−1

)
+
τn

2
fn − vn−1

]
= fn − fn−1 +

(
I −

τn

2
C
)−1 [(

I −
τn

2
C
)
(Cvn−1 + fn−1)

+ C
(
I +

τn

2
C
)(
vn−1 +

τn

2
fn−1

)
+

(
I −

τn

2
C
)
C

(τn
2
fn − vn−1

)]
= fn − fn−1 +

(
I −

τn

2
C
)−1 [(

I −
τn

2
C
)
(Cvn−1 + fn−1)

+ τnC2vn−1 +
τn

2
C(fn−1 + fn) +

τ 2n

4
C2(fn−1 − fn)

]
≥ fn − fn−1 +

(
I −

τn

2
C
)−1 [(

I −
τn

2
C
)
(Cvn−1 + fn−1)

+ τnC(Cvn−1 + fn−1) +
τ 2n

4
C2(fn−1 − fn)

]
= fn − fn−1

+

(
I −

τn

2
C
)−1

[(
I +

τn

2
C
)
(Cvn−1 + fn−1)+

τ 2n

4
C2(fn−1 − fn)

]
.

Since fn ≈ f (vn−1 + τn(Cvn−1 + fn−1)) and fn > fn−1. Using Taylor’s theorem, we arrive at

Cvn + fn ≥ fn − fn−1 +

(
I −

τn

2
C
)−1 (

I −
τn

2
C
)(

I + τnC −
Mτ 3n
4

C2
)

× (Cvn−1 + fn−1)

= fn − fn−1 +

(
I + τnC −

Mτ 3n
4

C2
)
(Cvn−1 + fn−1).
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Thus, for sufficiently small τn, the matrix I + τnC −
Mτ3n
4 C2 must be positive, where M is defined as Eq. (3.4). Therefore

our lemma is true. □

As consequences of the two lemmas, we may state the following two theorems for the monotonic growth and linear
stability properties of the numerical solution generated by (2.9), (2.10).

Theorem 3.3. If (3.2) holds for all n ≥ ℓ ≥ 0 and v0 ≥ 0, such that Cv0 + f0 > 0, then the sequence {vn}n≥ℓ produced by
the semi-adaptive scheme (2.9), (2.10) increases monotonically.

Proof. The theorem is a straightforward consequence from Lemmas 3.1 and 3.2. □

3.2. Numerical stability

Stability has been an extremely difficult issue while solving nonlinear quenching-type problems such as (1.1)–(1.3)
and (2.1)–(2.3). However, if the solution is varying relatively slowly, instability may be detected through conventional
linear stability analysis of the algorithms involved [20,24,25]. Though such a consideration cannot be rigorously justified,
the information obtained has been found to be practically meaningful and important [2,8,15]. We continue analyzing the
stability of the finite difference scheme (2.9), (2.10), for which the nonlinear term is frozen, in this section. To freeze a
nonlinear term is a typical linearization process in which the unknown function is replaced by a known quantity. This
eliminates the nonlinearity temporarily so that a conventional linear stability analysis can be carried out. Although a linear
stability can never be justified for replacing a nonlinear stability in the global sense, it may reflect effectively the local
solvability when temporal mesh step sizes used are sufficiently small [2,26].

Definition 3.1 ([23,27]). Let N > 0 be sufficiently large. Further, let vnk , ṽ
n
k , 1 ≤ k ≤ K , 0 ≤ n ≤ N , be the true and

perturbed solutions of a finite difference scheme, respectively. Denote ϵn = (ϵn1 , ϵ
n
2 , . . . , ϵ

n
K )

⊺, where ϵnk = vnk − ṽnk , 1 ≤

k ≤ K . We say that the scheme is numerically stable if ∥ϵn∥ ≤
ϵ0 , 0 ≤ n ≤ N , holds for any suitable Euclidean norm.

Theorem 3.4. If (3.2) holds for all n ≥ ℓ ≥ 0, then the semi-adaptive scheme (2.9), (2.10) is conditionally numerically stable
when f is frozen.

Proof. Let vnk , ṽ
n
k , 1 ≤ k ≤ K , 0 ≤ n ≤ N , be the true and perturbed solutions of (2.9), (2.10), respectively. Denote

ζ nk =
τndk
2hα , ϵ

n
k = vnk − ṽnk , 1 ≤ k ≤ K , and set ϵn = (ϵn1 , ϵ

n
2 , . . . , ϵ

n
K )

⊺, 0 ≤ n ≤ N . We show the theorem through a
mathematical induction. To this end, we first notice that, when f is frozen,(

I −
τn

2
C
)
ϵn+1

=

(
I +

τn

2
C
)
ϵn, n = 0, 1, . . . ,N − 1,

where C is defined in (2.6). Secondly, recall (3.2). We find that(
1 −

α

2

)
g0 +

α

2
g1 < 0,

(
1 −

α

2

)
gk−1 +

α

2
gk > 0, k = 2, 3, . . . , K ;

1 + ζ nk

(
1 −

α

2

)
g0 + ζ nk

α

2
g1 > 0, k = 1, 2, . . . , K , n = 0, 1, . . . ,N.

For n = 1, recalling (2.4) we must haveϵ1
∞

= max
1≤j≤K

⏐⏐ϵ1j ⏐⏐ =
⏐⏐ϵ1ℓ ⏐⏐ ≤

⏐⏐ϵ1ℓ ⏐⏐ − ζ 1ℓ

(
1 −

α

2

) ℓ−1∑
k=0

gk
⏐⏐ϵ1ℓ ⏐⏐ − ζ 1ℓ

α

2

ℓ∑
k=0

gk
⏐⏐ϵ1ℓ ⏐⏐

≤

[
1 − ζ 1ℓ

(
1 −

α

2

)
g0 − ζ 1ℓ

α

2
g1

] ⏐⏐ϵ1l ⏐⏐ − ζ 1ℓ
α

2
g0

⏐⏐ϵ1ℓ+1

⏐⏐
− ζ 1ℓ

ℓ∑
k=2

[(
1 −

α

2

)
gk−1 +

α

2
gk

] ⏐⏐ϵ1ℓ−k+1

⏐⏐
=

[
1 + ζ 0ℓ

(
1 −

α

2

)
g0 + ζ 0ℓ

α

2
g1

] ⏐⏐ϵ0ℓ ⏐⏐
+ ζ 0ℓ

α

2
g0

⏐⏐ϵ0ℓ+1

⏐⏐ + ζ 0ℓ

ℓ∑
k=2

[(
1 −

α

2

)
gk−1 +

α

2
gk

] ⏐⏐ϵ0ℓ−k+1

⏐⏐
≤

[
1 + ζ 0ℓ

(
1 −

α

2

) ℓ−1∑
k=0

gk + ζ 0ℓ
α

2

ℓ∑
k=0

gk

]
max
1≤j≤K

⏐⏐ϵ0j ⏐⏐
≤ max

1≤j≤K

⏐⏐ϵ0j ⏐⏐ =
ϵ0

∞
.
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Note that
ϵ1

∞
=

⏐⏐ϵ1K ⏐⏐ due to the fact that
∑K

k=1 gk ≤ −1. Consequently, we acquire from the above that

ϵ1
∞

=
⏐⏐ϵ1K ⏐⏐ ≤

⏐⏐ϵ1K ⏐⏐ − ζ 1K

(
1 −

α

2

) K−1∑
k=0

gk
⏐⏐ϵ1K ⏐⏐ − ζ 1K

α

2

K∑
k=1

gk
⏐⏐ϵ1K ⏐⏐

≤

[
1 − ζ 1K

(
1 −

α

2

)
g0 − ζ 1K

α

2
g1

] ⏐⏐ϵ1K ⏐⏐ − ζ 1K

K∑
k=2

[(
1 −

α

2

)
gk−1 +

α

2
gk

] ⏐⏐ϵ1K−k+1

⏐⏐
=

[
1 + ζ 0K

(
1 −

α

2

)
g0 + ζ 0K

α

2
g1

] ⏐⏐ϵ0K ⏐⏐ + ζ 0K

K∑
k=2

[(
1 −

α

2

)
gk−1 +

α

2
gk

] ⏐⏐ϵ0k−K+1

⏐⏐
≤

[
1 + ζ 0K

(
1 −

α

2

) K−1∑
k=0

gk + ζ 0K
α

2

K∑
k=1

gk

]
max
1≤j≤K

⏐⏐ϵ0j ⏐⏐
≤ max

1≤j≤K

⏐⏐ϵ0j ⏐⏐ =
ϵ0

∞
. (3.5)

Suppose that
ϵ j

∞
≤

ϵ0
∞

for j = 1, 2, . . . , n − 1. Again, recall (2.4). For
√
17−1
2 ≤ α ≤ 2, we observe that

ϵn
∞

= max
1≤j≤K

⏐⏐ϵnj ⏐⏐ =
⏐⏐ϵnℓ ⏐⏐ ≤

⏐⏐ϵnℓ ⏐⏐ − ζ nℓ

(
1 −

α

2

) ℓ−1∑
k=0

gk
⏐⏐ϵnℓ ⏐⏐ − ζ nℓ

α

2

ℓ∑
k=0

gk
⏐⏐ϵnℓ ⏐⏐

≤

[
1 − ζ nℓ

(
1 −

α

2

)
g0 − ζ nℓ

α

2
g1

] ⏐⏐ϵnℓ ⏐⏐ − ζ nℓ
α

2
g0

⏐⏐ϵnℓ+1

⏐⏐
− ζ nℓ

ℓ∑
k=2

[(
1 −

α

2

)
gk−1 +

α

2
gk

] ⏐⏐ϵnℓ−k+1

⏐⏐
=

[
1 + ζ n−1

ℓ

(
1 −

α

2

)
g0 + ζ n−1

ℓ

α

2
g1

] ⏐⏐ϵn−1
ℓ

⏐⏐
+ ζ n−1

ℓ

α

2
g0

⏐⏐ϵn−1
ℓ+1

⏐⏐ + ζ n−1
ℓ

ℓ∑
k=2

[(
1 −

α

2

)
gk−1 +

α

2
gk

] ⏐⏐ϵn−1
ℓ−k+1

⏐⏐
≤

[
1 + ζ n−1

ℓ

α

2

ℓ∑
k=0

gk + ζ n−1
n

(
1 −

α

2

) ℓ−1∑
k=0

gk

]
max
1≤j≤K

⏐⏐ϵn−1
j

⏐⏐
≤ max

1≤j≤K

⏐⏐ϵn−1
j

⏐⏐ =
ϵn−1


∞
. (3.6)

Based on our hypothesis, it is immediately clear that
ϵ j

∞
≤

ϵ0
∞

for j = 1, 2, . . . ,N . By the same token, we have
∥ϵn∥∞ =

⏐⏐ϵnK ⏐⏐. Since situations for (3.5) and (3.6) are similar, the proof of the theorem is thus completed. □

4. Simulation experiments

We consider a sequence of computational experiments in the section to validate and illustrate anticipated critical
domains, quenching times, and quenching locations of the fractional Kawarada problem (2.1)–(2.3) without a degeneracy,
that is, d(x, t) ≡ 1.

To examine aforementioned key mathematical features of the solution and our algorithm (2.9), (2.10), we first set
α = 2. Thus, we may compare our numerical solution directly to known results related to the conventional integer order
Kawarada problem (1.1)–(1.3). Our semi-adaptation only kicks in during final stages of computations, say, as

δ ≤ max
0≤x≤a

u(x, t) < 1,

where δ > 0 is chosen to be close to one, for maximizing the computational efficiency.

Case I: α = 2
Set F (x) ≡ 0. While it is known in the case that the critical length a⋆ ≈ 1.5303 [1,5,6,10], our computations indicate

that a⋆ ≈ 1.53125, which is consistent with the existing result.
Based on the above, we conduct a study of corresponding quenching times Ta for a = 1.55, 2, π and 10. Initial

temporal step τ1 = (1/2)×10−4 and spatial step h = a×10−2 are used. An initial CFL number λ1 = 1/(2a2) is utilized [23].
Our results are shown in Table 1 together with those obtained by Chan and Chen for a = π , 0.5 ≤ Ta ≤ 0.6772 [6] and
Mooney and Sheng et al. [13,20,25] for a = 1.55, 2. Standard Crank–Nicolson scheme and Newton iterations are used in
the former and compounded adaptive finite difference algorithms are developed in the latter. Let TM

a be the quenching
time given by [20,25] and T S

a be the quenching time given by [13]. It is found that our results are well consistent with
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Table 1
Correlations between the quenching time Ta and domain size a, as
compared with TM

a given by [20,25] and T S
a by [13].

a Ta TM
a T S

a

1.55 3.966 3.963 3.961
2 0.7798 0.779 0.779
π 0.5382 0.538 0.537
10 0.5004 0.5 0.5

Table 2
Monotone convergence of Ta as a → ∞ (T S

a values are from [4,13]).

a Ta T S
a a Ta T S

a a Ta T S
a a Ta T S

a

1.55 3.966 3.961 1.80 0.9996 0.999 3.00 0.5472 0.546 5.00 0.5026 0.503
1.60 2.0103 2.007 1.90 0.8642 0.871 π 0.5382 0.537 10.00 0.5004 0.500
1.70 1.2572 1.257 2.00 0.7798 0.779 4.00 0.511 0.511 50.00 0.5004 0.500

Table 3
Numerical solution u(a/2, t) and theoretical estimates uF (a/2, t) offered by
(4.1) (a = 2, h = a × 10−2, τ = 0.5 × 10−4 and F (x) ≡ 0).
t u(a/2,t) uF (a/2, t) t u(a/2,t) uF (a/2, t)

0.7772 0.94261 0.9279 0.7774 0.94491 0.9307
0.7776 0.94732 0.9337 0.7778 0.94986 0.9368
0.7780 0.95254 0.9400 0.7782 0.95539 0.9434
0.7784 0.95845 0.9471 0.7786 0.96176 0.9510
0.7788 0.96539 0.9553 0.7790 0.96944 0.9600
0.7792 0.97408 0.9654 0.7794 0.97962 0.9717
0.7796 0.98677 0.9800 – – –

Fig. 1. Relative errors of Ta vs. a when α = 2. Computations are based on algorithms utilizing (2.9), (2.10). Red curve is for calculations together
with an adaptation suggested by [13]. Blue curve is for those when an adjustment introduced by [20,25] is considered. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

existing predictions TM
a and T S

a . Relative errors of our quenching time Ta with respect to TM
a and T S

a are given in Fig. 1. It
can be observed that the computed errors are acceptable within the range of numerical accuracy.

Table 2 is devoted to a demonstration of the monotone decay of Ta to 1/2 as the interval size a increases. We have
compared our results with those obtained by Sheng, Khaliq and Ge [4,13,21] in Fig. 2, and again the results are satisfactory.

It is worthwhile to mention that, for a = 2, Filippas and Guo observe that all quenching solutions of (2.1)–(2.3) with
F ≡ 0 satisfy the following theoretical expectation [3]:

lim
t→Ta

u(1, t) = 1 −
√
2(Ta − t)1/2. (4.1)

In Table 3, numerical solutions are presented together with evaluations based on (4.1) for fixed a = 2, x = 1 in our final
12 t-steps immediately before quenching. In addition, we give the curve of the relative error between these two results
in Fig. 2. It is interesting to see that our numerical solutions precisely reveal this property highlighted by (4.1).

Further, for a = 2 and F (x) = 0.1 sin πx
2 , profiles of the numerical solutions, u and ut , obtained via (2.9), (2.10) are

plotted in Fig. 3 immediately before T ∗
a ≈ 0.6964. Spatially symmetrical profiles of the functions are clearly visible. It

can also be seen that the maxima increase monotonically as the time t increases until the unity is reached by u. In fact,



10 L. Zhu and Q. Sheng / Journal of Computational and Applied Mathematics 374 (2020) 112714

Fig. 2. LEFT: Monotone convergence of Ta as a → ∞. The blue curve is for the quenching time profile obtained in our experiments. Values marked
with ⋆ are particular quenching times observed in [13]. An excellent agreement between the both is found; RIGHT: Relative difference between
u(a/2, t) and theoretical estimates given by (4.1) (a = 2, h = a× 10−2, τ = 0.5× 10−4 and F (x) ≡ 0). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. TOP: profiles of u and ut immediately before quenching; BOTTOM: profiles of max0≤x≤a u and max0≤x≤a ut vs. the time t . Quenching is
observed at T ∗

a ≈ 0.6964 for a = 2.

a quenching-blow up of the solutions is confirmed by max0≤x≤2 u(x, T ∗

2 ) = u(1, T ∗

2 ) ≈ 0.99226683 in our experiments.
To see more, in Table 4, we show values of u, ut at different locations. The spatial symmetry of functions is clearly
observable. This is consistent with the theoretical expectation [4,10]. For showing more details of the solution structures,
we plot three-dimensional surfaces of u and ut in their final 20 temporal levels priori to quenching in Fig. 4. It is again
observable that while u approaches the unity in the center of the spatial domain quickly but peacefully, the derivative ut

rashes to its peak at an altitude of approximately 44.28126959 in a fast and rather violent way as the quenching time T ∗
a

is approached.
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Fig. 4. Three-dimensional views of u and ut in their final 20 temporal steps immediately before quenching (0.6924 ≤ t ≤ 0.6964) for a = 2. The
peak of ut (a/2, t) is approximately 44.28126959. A quenching phenomenon is observed.

Table 4
Values of functions u(x, T ∗

a ) and ut (x, T ∗
a ) when a = 2.

x 0.94 0.96 0.98 1.00 1.02 1.04 1.06

u(x, T ∗
a ) 0.97012708 0.980947412 0.98906719 0.99226683 0.98906722 0.98094746 0.97012713

ut (x, T ∗
a ) 25.07309149 32.41091340 40.33291633 44.28126959 40.33294449 32.41094593 25.07311756

Table 5
Possible correlations between critical domain sizes and the fractional order α.
α 2 1.95 1.9 1.85 1.80 1.75 1.7 1.65 1.6

a⋆ 1.53125 1.48437 1.43755 1.39076 1.34398 1.29718 1.25038 1.20355 1.15666

To summarize, our simulation results for the space fractional Kawarada problem (2.1)–(2.3) are satisfactorily consistent
to known results of the conventional Kawarada problem as α = 2 [6,10,13,20,25]. Thus the new algorithm (2.9), (2.10) is
effective and reliable.

Case II: α ∈

[
(
√
17 − 1)/2, 2

]
In the circumstance we take α = 1.8, a = 2, F (x) = 0.1 sin πx

2 . Typical quenching phenomena are again noticed in our
experiments. We show profiles of the numerical solutions u, ut in Fig. 5 up to a quenching time T ∗

≈ 0.5946. Further,
profiles of max0≤x≤a u and max0≤x≤a ut immediately before quenching are provided in Fig. 5. The quenching location
observed is approximately at x∗

= 0.86 which is not at the center of spatial interval. We have u(x∗, T ∗) = 0.99945319.
To illustrate more precisely quenching characteristics of the solutions, we plot three-dimensional surfaces of both u and
ut in Fig. 6 for the final 20 temporal steps immediately before quenching. It is found that, while max0≤x≤a u approaches
the unity smoothly, ut reaches out for a computational peak at about 63.01566851 as t → T ∗

a ≈ 0.5946.
It has been observed throughout our investigations with various fractional α values, quenching phenomena do occur.

However, numerical solutions u, ut do not seem to be symmetric in space as t → T ∗
a . Furthermore, locations of

max0≤x≤a u(x, t), max0≤x≤a ut (x, t) do not in general appear to be at the center of the spatial domain used. Thus it is
extremely meaningful to utilize reliable numerical tools for exploring fractional quenching-combustion model problems
such as (2.1)–(2.3).

Now, set F (x) ≡ 0. For different fractional α values, Table 5 gives different critical domains discovered from our
intensive computational experiments. Through the simple computation, we have noticed that the critical interval size
decreases to some fixed value between 0.0468 and 0.0470 while the fractional derivative order α decreases from 2 to√

17−1
2 . The discovery is new to the literature and demands further careful investigations. It is interesting to observe

that Fig. 7 (left frame) may suggest a linear correlation between the critical domain size and fractional order α as
(
√
17 − 1)/2 ≤ α ≤ 2.
Table 6 is designed for quenching times with respect to different α values based on distinctive interval domain sizes.

Apparently, as α decreases, T ∗
a decays monotonically. In Fig. 7 (right frame), relationships between the quenching time

T ∗
a and α are listed with different lengths a. It is noticed that, when a ≥ 2, quenching time changes only slightly as the

fractional derivative order α increases from (
√
17 − 1)/2 to 2. However, for a < 2, the corresponding quenching time

changes rapidly as the order increases.
In Table 7, Quenching locations xa with respect to different interval sizes a for α ∈

[
(
√
17 − 1)/2, 2

]
are given. In

Fig. 8 (left), correlation curves between xα − a/2 and α are given for a = 1.55, 2, π . We also observe that for a moving
from 1.55 to π , terminal local extreme value locations of u shift slowly from right to left across the midpoint of spatial



12 L. Zhu and Q. Sheng / Journal of Computational and Applied Mathematics 374 (2020) 112714

Fig. 5. TOP: u and ut immediately before quenching. BOTTOM: maxx u and maxx ut vs. t (α = 1.8, a = 2, T ∗

2 ≈ 0.5946).

Fig. 6. Three-dimensional views of functions u and ut in the final 20 temporal steps immediately before quenching (0.5908 ≤ t ≤ 0.5946). a = 2
is used. The peak ut value is approximately 63.01566851. Quenching is observed.

Table 6
Quenching times T ∗

a with respect to different α.
α 2.0 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60

T ⋆1.55 3.966 2.0544 1.5364 1.2716 1.104 0.9856 0.8956 0.8236 0.7644

T ⋆2 0.7798 0.7494 0.7224 0.6978 0.6752 0.6546 0.6354 0.6174 0.6008

T ⋆π 0.5382 0.5368 0.5352 0.5334 0.5316 0.5294 0.5274 0.5252 0.5230

T ⋆10 0.5004 0.5006 0.5008 0.5008 0.501 0.5012 0.5012 0.5014 0.5014

intervals as α decreasing gradually. Similarly, in the second frame of Fig. 8, curves corresponding to a = 4, 5, 8, 10, 50 are
given. Terminal local extreme value locations of u shift slowly from left to right across the midpoint of spatial intervals
as α decays.
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Fig. 7. LEFT: Critical sizes vs. α; RIGHT: Quenching times vs. α. From bottom to top, curves are for a = 10, π, 2, 1.55, respectively.

Fig. 8. Correlations between xα − a/2 and α (LEFT: a = 1.55, 2 and π ; RIGHT: a = 4, 5, 8, 10 and 50, from the bottom to top respectively).

Table 7
Quenching locations xα with respect to different interval size a for (

√
17 − 1)/2 ≤ α ≤ 2.

xα a

1.55 2 π 4 5 8 10 50

x2.0 0.775 1 1.5707963 2.0 2.5 4 5 25
x1.95 0.7439998 0.98 1.53938395 2.0 2.55 4.64 6.4 44.5
x1.9 0.7129998 0.92 1.53938395 2.0 2.6 4.88 6.6 44.5
x1.85 0.66649979 0.9 1.50796795 2.04 2.65 5.04 6.8 44.5
x1.8 0.63549998 0.86 1.50796795 2.04 2.75 5.2 7.0 45
x1.75 0.60449998 0.84 1.50796795 2.08 2.8 5.36 7.10 45
x1.7 0.57349998 0.8 1.53938395 2.12 2.85 5.44 7.3 45.5
x1.65 0.54249998 0.78 1.53938394 2.16 2.95 5.6 7.4 45.5
x1.6 0.51149998 0.76 1.53938395 2.2 3.0 5.68 7.5 45.5

Most parts of our computations are carried out on a MatLab R⃝ platform and its parallel computing toolbox on an HP R⃝

C3000BL HPC cluster running CentOS R⃝ V at Baylor University. The processor consists of 128 nodes, each with 32GB of
RAM and dual quad-core Intel 2.6 GHz processors giving a total of 1024 cores. An Infiniband ConnectX R⃝ DDR network is
used for message passing and networked storage. Shared storage capacity in the cluster is 123TB.

5. Conclusions and forthcoming studies

An effective numerical approach is proposed and analyzed for solving the one-dimensional space-fractional Kawarada
problem in this paper. An one-sided Riemann–Liouville fractional Laplacian is employed. The modeling problem exhibits
strong quenching singularities but provides a broad spectrum in modern applications.

An optimal α-order finite difference scheme is accomplished for computing the anticipated quenching solutions of
the underlying fractional differential equation. In this novel new approach, the fractional derivative is approximated
via standard and shifted Grünwald formula combinations. The resulted semi-discretized differential system is then
handled through acceptable fractional approximations. Arc-length adaptation is adopted to ensure additional accuracy
and reliability throughout the numerical procedure. Criteria to ensure the solution positivity, monotonicity, convergence
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and stability are obtained. It is proven that the semi-adaptive algorithm is conditionally stable in the L∞ conservation
sense.

Two sequences of simulation experiments are designed and carried out to validate and confirm that numerical solutions
obtained. It is found that results acquired are well consistent with known results and theoretical predictions. In the
numerical investigation, fractional order α = 2 is firstly selected. Computed solutions are compared with existing integer
order quenching problem results published. Secondly, for fractional order α ∈

[√
17−1
2 , 2

]
, computer simulations are

conducted to examine key characteristics, features and properties of the fractional quenching problem. New evidences
are revealed for fractional quenching solutions including possible correlations between the quenching time and fractional
order α, and between quenching locations and α. It is found that the local maximal value point of u shifts from the right
to the left across the midpoint of the interval if a ∈ (1, π]; and shifts from the left to the right across the midpoint of the
interval if a > π . it is also noticed that, as the order of fractional derivative decreases, the critical interval decreases till
some fixed value between 0.0468 and 0.0470. Based on numerous results obtained and analyzed in this project, we have
been planning further endeavors including impacts of the degeneracy and transport coefficients on quenching solution
features [4,7,9,15].

Further, considerations of multidimensional problems may introduce a tremendous amount of difficulties in both
analysis and computations. Due to the non-local features of fractional-order differential operators, large and dense
matrices are resulted from typical finite difference discretization, since current numerical solutions may depend on
solutions on all previous temporal layers. The challenges have led us to several sensitive algorithmic designs and
procedures. Highly effective iterative methods, such as the fast multipole and Krylov subspace implementations, have been
in our research agendas. Multidimensional and nonlocal fractional quenching problems and operator splitting methods
will also be investigated [11,14,27]. Possible applications of fraction quenching-combustion problems in multi-physics
and thermal engineering will also been explored in our forthcoming publications.
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