期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:50
CONVOLUTION INTEGRAL-EQUATIONS WITH GEGENBAUER FUNCTION KERNEL
Article; Proceedings Paper
VANBERKEL, CAM ; VANEIJNDHOVEN, SJL
关键词: GEGENBAUER FUNCTIONS;    GEGENBAUER TRANSFORMATIONS;    RODRIGUES FORMULA;    FRACTIONAL CALCULUS;    INTEGRAL EQUATIONS;   
DOI  :  10.1016/0377-0427(94)90328-X
来源: Elsevier
PDF
【 摘 要 】

In this paper we develop a concise and transparent approach for solving Mellin convolution equations where the convolutor is the product of an algebraic function and a Gegenbauer function. Our method is primarily based on (1) the use of fractional integral/differential operators; (2) a formula for Gegenbauer functions which is a fractional extension of the Rodrigues formula for Gegenbauer polynomials (see Theorem 3); (3) an intertwining relation concerning fractional integral/differential operators (see Theorem 1), which in the integer case reads (d/dx)2n+1 = (x-1d/dx)nx2n+1(x-1d/dx)n+1. Thus we cover most of the known results on this type of integral equations and obtain considerable extensions. As a special illustration we present the Gegenbauer transform pair associated to the Radon transformation.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_0377-0427(94)90328-X.pdf 571KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次