期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:321
A singularly perturbed convection-diffusion problem with a moving pulse
Article
Gracia, J. L.1  O'Riordan, E.2 
[1] Univ Zaragoza, Dept Appl Math, Zaragoza, Spain
[2] Dublin City Univ, Sch Math Sci, Dublin 9, Ireland
关键词: Singular perturbation;    Gaussian pulse;    Shishkin mesh;   
DOI  :  10.1016/j.cam.2017.03.003
来源: Elsevier
PDF
【 摘 要 】

A singularly perturbed parabolic equation of convection diffusion type is examined. Initially the solution approximates a concentrated source. This causes an interior layer to form within the domain for all future times. Using a suitable transformation, a layer adapted mesh is constructed to track the movement of the centre of the interior layer. A parameter uniform numerical method is then defined, by combining the backward Euler method and a simple upwinded finite difference operator with this layer-adapted mesh. Numerical results are presented to illustrate the theoretical error bounds established. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2017_03_003.pdf 670KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次