期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:50
A SHORTCUT TO ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS
Article
DEHN, T
关键词: ORTHOGONAL POLYNOMIALS;    RECURRENCE RELATIONS;    POINCARE THEOREM;    RATIO ASYMPTOTICS;    PADE APPROXIMANTS;    CONVERGENCE ACCELERATION;    DELTA-2-METHOD;   
DOI  :  10.1016/0377-0427(94)90301-8
来源: Elsevier
PDF
【 摘 要 】

We consider the asymptotic behavior of the ratios q(n+1)(z)/q(n)(z) of polynomials orthonormal with respect to some positive measure mu. Let the recurrence coefficients alpha(n) and beta(n) converge to 0 and 1/2, respectively. Then, q(n+1)(z)/q(n)(z) --> PHI(z), for n --> infinity, locally uniformly for z is-an-element-of C\supp mu, where PHI maps C\[-1, 1] conformally onto the exterior of the unit disc (Nevai (1979)). We provide a new and direct proof for this. and some related results due to Nevai, and apply it to convergence acceleration of diagonal Pade approximants.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_0377-0427(94)90301-8.pdf 872KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次