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Abstract 

We consider the asymptotic behavior of the ratios q,+r (z)/q,(z) of polynomials orthonormal with respect to 

some positive measure EL. Let the recurrence coefficients on and p, converge to 0 and i, respectively. Then, 

qn+ I( z)/q,J z) -+ G(z), for n + 00, locally uniformly for z E @\supp IL, where @ maps C\[ - 1, 11 conformally onto 
the exterior of the unit disc (Nevai (1979)). We provide a new and direct proof for this and some related results due 
to Nevai, and apply it to convergence acceleration of diagonal Pad6 approximants. 
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1. Introduction 

Let p be a positive measure with real support E. A polynomial qn of degree y1 is called an 
nth orthogonal polynomial with respect to p if 

q, x xjdp(x)=O, forj=O,l,..., n-l, ( ) 
and called orthonormal if, additionally, 

and the leading coefficient y,, of q, is positive. 
As it is well known, the orthonormal polynomials q, satisfy the following property. 

Property 1.1 (Recurrence relations). There exist real a,, and positive p, with 

zqJ-4 =Pnqn+1(4 + a,q,(z) + Pn-lqn-l(Z), for n 2 1. 

Obviously, 

&=y”-. 
Y n+l 

(2) 

(3) 
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Following [13, p.101, we denote by MO, 1) the class of measures for which the recurrence 
coefficients CX, and p, converge to 0 and 3, respectively. Reference [20] gives a survey of 
measures contained in M(0, 1). 

An extensive research on recurrence relations has been carried out long ago, and various 
results are scattered over a multitude of papers. Therefore we have included an (incomplete) 
historical section. 

It is instructive to write the recurrence relations (2) in matrix form: 

If ,X EM(O, 11, then the matrices A,(z) are convergent: 

A,(z) -A(z) := (“; i’), for n -+ ~0. 

(4) 

(5) 

The eigenvalues of A(t) are Q(z) and (G(z))-’ with corresponding eigenvectors (Q(z), ljT 
and (1, @(z)>~. Hence Nevai’s Theorem states the convergence of q,+I(t)/q,(z) to the 
dominant eigenvalue of A(z). We provide a simple method of deriving this result and related 
theorems in Section 4. To this end, we investigate the behavior of the zeros of the orthonormal 
polynomials q, and show normal family properties for the ratios of the manic orthogonal 
polynomials. These preparations are made in Section 3. In Section 5 we derive new conver- 
gence results for diagonal Pade approximants. 

2. Recurrence relations and Poinca&‘s Theorem 

Each sequence of polynomials qn which satisfies (2) with positive p, and real a,, is a 
sequence of polynomials orthonormal with respect to some nonnegative measure p with real 
support. This statement (usually called Favard’s Theorem after a note by Favard [6]) follows 
from Stieltjes’ [18] and Hamburger’s [S] solutions to the moment problem on the real line. If 
the p,, are not necessarily positive, but only nonvanishing real numbers, then the q, are 
orthogonal with respect to some (nonunique) signed measure with real support [17]. 

PoincarC [14, Chapters 1, 2, 61 was probably the first who proved ratio asymptotics for 
recursively defined quantities. 

Theorem 2.1 (Poincare [14]). Let the numbers f(n) satisfy 

f(n) + a,,,f(n - 1) + . . . +~~~,~f(n -k) = 0, for n = k, k + 1,. . . , 

with lim,,, anj=aj for-j= l,..., k, and let the characteristic polynomial 

(6) 

p(A) = hk + a,hk-’ + * * * +a,_,h + ak 

have k zeros 11, . . . , lk with different absolute values. Then either f(n) = 0 for all n 2 n,, or 
f(n + 1)/f(n) conuerges to some zero lj. 
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Poincare’s own proof of Theorem 2.1 was very complicated, and a shorter proof of Theorem 
2.1 for the special case of three-term recurrence relations was given in [21, Section 21. 
Meanwhile, Blumenthal [2, pp. 16-211 had used Poincare’s Theorem and Stieltjes’ solution of 
the moment problem to derive ratio asymptotics for orthonormal polynomials. He formulated 
his results in terms of continued fractions. In modern notation, one of his results reads as 
follows. 

Theorem 2.2 (Blumenthal [2]). Let the polynomials q, satisfy the recurrence relations (2) with 
convergent recurrence coefficients cr, + 0 and 0 < ~3, + i. Then the polynomials q, are orthogo- 
nal with respect to some measure u, whose support is the union of [ - 1, 11 with finitely many 
isolated points. Pointwise, for z G supp Z_L, there holds 

qn+I(‘) 

4,(z) 

+ Q(z). 

Blumenthal’s argumentation is more heuristic than rigorous, and, as a 
computation of supp p is false. Blumenthal made the faulty assumption 
implied 

consequence, his 
that p E M(0, 1) 

qn+ l(l) 
qllQ) 

-+ 1, for n +a. 

But this is valid only if the support of p is the union of [ - 1, 11 with at most finitely many 
points. We will come back to this problem in Section 4.1. 

Example 2.3. If (Y, = 0 for all n, and p, + i(l + E), then [ - 1 - E, 1 + E] c supp p, and hence 
for n + CC the number of zeros of q, outside [ - 1, l] tends to infinity. Therefore, we can choose 
all the (Y, = 0 and let the p, converge so slowly to i from above that the number of zeros of q, 
which are greater than 1 tends to infinity, contradicting Blumenthal’s computation of supp p. 

A generalization of Poincare’s Theorem has been given in [12, Theorem 21. 

Theorem 2.4 (Mate and Nevai [12]). Let A, E Ckxk, n = 1, 2,. . . , u. E Ck, and let the vectors 
u, E Ck be defined recursively by u,,+~ :=A,,u,. Zf A,, converges to A E Ckxk with k eigenvalues 

l l,“‘, lk with different absolute values, then either u, = 0 for all n large enough, or no u, 
vanishes, and there exist numbers c, such that c,u, converges to some eigenvector of A. 

Proof. Of course, if uf10 = 0, then u, = 0 for n 2 no. So let us presuppose u, # 0 for all n and 
I l-1 I < I & I < . . . < I lk I. Denote with x1,. . . , xk eigenvectors of A corresponding to ll,. . . , f;, 

with ]I xi ]I m = 1, i = 1,. . . , k. These vectors form a basis of Ck, and hence we can write 

U, = pn,iXi + . . . +pn,kxk, A’%,, = g~~~,Ix, + . . * +lFpu,,kxk, for m > 1. 

Since A, + A, we obtain for all m, 

A n+m-1 - -*. .A,u, -A%, = v,,, (hence u,+, =Amu, + v~,~), (7) 
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Now we take the maximal j which fulfils 

I pn,j I = lrylyk I P,,~ I, for infinitely many II. 
. . 

Let no be so large that for i > j and II 2 n, no I ,LL~,~ I is maximal. 
In the next step we show the existence of ~zi with 

If I p-Ln,j 1 is maximal, then llu,llm < k I pn,j I7 and with (8) we obtain 

lim kIJJm o 

-= 

n+aq 
fin,, maxlmal IPn,jI ’ 

(8) 

(9) 

Therefore we can choose ~zi > n, (with Ipn,,jI maximal) SO large such that for 'n,l= C!=l'iXi, 
we have 

for which 1 P,,~ I is maximal. 

I/J n+l,i I = I Pu,,iSi + ‘i I 

Hence ( pa+ I,j I is maximal, 

u n+m = SE%J~i + * * * 

With (9) and I li 1 < I ~j I for 

With (7) this implies 

< IPn,jJj+vjI = IPn+l,jlY for i<j. 
too, and by induction I pUn,j I is maximal for all II > n,. Obviously, 

+&?%,kXk + vn,m* 

i <j this yields I pn,i I/I ~~,j I +Oforn+mandi<j.Butwealso 
obtain I pn,i l/l P,, j I - 0 for n -+ w and i > j, because ( CLn,j I > lpn,i I for all IZ >, ~ti, although 
1 li I > I cj I for i >I. So finally we arrive at 

u, 
--)xj, for n-co. 0 
pn,i 

It is easy to formulate parameter-dependent versions of Theorem 2.4 which yield locally 
uniform convergence. Poincare’s Theorem follows easily from Theorem 2.4 when the recur- 
rence relations (6) are written in matrix form [12]. We mention [lo] for a further discussion of 
recurrence relations. 

3. The properties of the zeros 

The zeros of the polynomials q, have many useful properties. 
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Property 3.1. All zeros of q, lie in the convex hull of the support of u. 

To abbreviate, we set f(p) := conv(supp p), the convex hull of the support of p. 

Property 3.2. Each open interval F with u.(F) = 0 contains at most one zero of q,. 

Property3.3. Thezerosx,,...,x, ofqn and thezerosy,,...,y,+, ofq,+l interlace: 

Yl<X,<Y,< .** <Yn<Xn<Yn+l* (10) 

Properties 3.1 and 3.2 follow directly from the orthogonality relations (1) [7, Satz 2.2, Satz 
2.41, [19, Theorem 3.3.11. Property 3.3 can be demonstrated easily by induction [19, Theorem 
3.3.21. Let dist(z, K) := inf( ( z -x I: x E K) denote the distance from z to K and Dist(z, K) 
:= sup{ ( z -x I: x E K} the maximal distance from z to K. For y E K and z E C we have 
dist(z, K) < ( z - y I < Dist( z, K). Now Property 3.1 reads as follows. 

Property 3.4. If q,(y) = 0 and z E C, then dist(z, ?((cL)) G 1 z -y I G Dist(z, i(p)). 

Our first lemma shows how Properties 3.3 and 3.4 yield bounds for the ratios 

QnW 
Qn+d4 (11) 

of manic polynomials. Our bounds are uniform throughout all polynomials having the interlac- 
ing property, e.g., throughout all sequences of manic orthogonal polynomials. The upper bound 
is well known and can also be obtained from the partial fraction decomposition of QJQ, + 1, 
since (10) implies that all residues are positive [4]. We remark that Lemma 3.5 can be 
transferred to ratios of polynomials with zeros interlacing on arcs with bounded rotation. 

Lemma 3.5. Let the zeros of the polynomials Q,(t) = (z -x,)(z -x2). . . (z -xn> and Q,+,(z) 
= (-2 -Y&z -YJ *. * (z - yn+ 1) satisfy the interlacing property (10). Then for all z E C and each 
set K containing all xi and yi, there holds 

dist(z, K) Q&4 
I I 

1 

Dist(z, K)* ’ Q,+,(Z) ' dist(z, K) * 

Proof. We have to consider three cases: 
(a) Re z <yl; 
(b) yj<Re Z~Yj+, foranyj, 1GjGn; 

Cc> yntl G Re z. 
Case (a): For y1 2 Re z, using the interlacing property (lo), we obtain 

)z-yiI < Iz-xxi1 G Iz-yyi+rl, for lGi<n. 

Together with dist( z, K) G Dist( z, K) and Property 3.4 this implies 

(12) 

dist(z, K) 1 1 Q&4 
Dist(z, K)* ’ Dist(z, K) ’ I z -Y~+~ I ’ Q,+,(z) ’ I z -Y, I ’ dist(z, K) ’ I I 

1 1 
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Case (c) is similar to case (a), hence only (12) in case (b) remains to be demonstrated. 
Assume xj G Re z. Now the interlacing property (10) leads us to 

Iz-xxi1 G Iz-yyiI, for l<iGj, 

(,~-y~+~l G It-xXil, for lGi<j-1, 

)z-yi( G Iz-xxi1 G (~-y~+~l, forj+l<i<n. 

From Property 3.4, we conclude 

dist(z, K) l~-xjI Qnb) 

I I 

1 1 

Dist(z, K)* ’ (z-y,1 Iz-Y~+~I’ Q,+,(Z) ’ IZ-Yj+ll’ dist(zT K)’ 

The case xi > Re z is very similar. All we have to do is to substitute yj+l by yj in the inequality 
above. This completes the proof of Lemma 3.5. q 

Lemma 3.5 gives rise to the following important definition. We emphasize that an interlacing 
sequence does not have to be a sequence of manic orthogonal polynomials, because no 
recurrence relations have to be valid. 

Definition 3.6. Let {Q,) be a sequence of manic polynomials of degree n. We call {Q,} an 
interlacing sequence over the set K, if the zeros of Q, and Q,,, interlace for all n, and if all 
these zeros are contained in the set K. We denote the set of all interlacing sequences over K 
with I(K) and write I(a, b) for the set of all interlacing sequences over [a, b]. With Qk(a, b) 
we denote the set of all ratios 

Q,+,(z) 
z”Qn(z> ’ (13) 

where n, n + k E N, k E Z, and (Q,} is an interlacing sequence over [a, bl. QJK) is defined 
analogously. 

Lemma 3.5 has immediate consequences for the ratios (13). 

Theorem 3.7. Let K c @ be compact. Then Qk( K) is uniformly bo_unded on closed subsets of 
C\(Ku (0)) andf arms a normal family of meromorphic functions in 62 \ K. Especially, Qk( - 1, 1) 
is a normal family in a=\[ - 1, 11 for all k, k E Z. 

Proof. The uniform boundedness of the ratios (13) follows directly from (12) and the property 

lim 
dist(z, K) 

Izl 
= lim 

Dist(z, K) 

Z-m Z-m IZJ =l. (14) 

Now Montel’s Theorem [l, Theorem 5.151 implies that Qk(K) is a normal family in c\K. U 

Corollary 3.8. Let p have compact support E c [a, bl, and let k E Z. Then the ratios 

Q,+,(zVQ,(z) of th e corresponding manic orthogonal polynomials are uniformly bounded on 
closed subsets of C \ [ a, 61 and form a normal family in c\[a, b]. 
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Proof. Due to Properties 3.1 and 3.3, the manic orthogonal polynomials Q,(Z) form an 
interlacing sequence over [a, b]. III 

Theorem 3.9. Let {Q,} E Z(u, b), k # 0 be fixed, G c @\[a, bl a domain, cp holomorphic in 
G \ {w} and { zj} a sequence of complex numbers with lim j +_,zj = t * E G U {co). Additionally, for 

all j let 

Qn+k(Zj) = p(z,) 

,‘%A Q,( zj) ’ ’ 

Then the following statements hold true. 
(i) cp can be continued analytically to c\[u, b]. Furthermore, 

Qn+&) for n + w : dz) , 
z"Q&) zk 

7 

locally uniformly on c\([u, b] U IO}), and 

Qn+dz) 
Q,(Z) + cp(Z>? for n + w, 

locally uniformly on C\[u, bl. 
(ii) 9 possesses the Laurent series at co of the form 

(P(z)=zk+‘&z k-1+(Pk_2Zk-2+ . . . . 

with Q,(z) = z” + qn_l,nzn-l + qn_2,nzn-2 + * * * , 

lim b?n+k-l,n+k -qn-1,n) =(Pk-1 
n-m 

is valid. 

Proof. Formula (15) implies 

Qn+k('j) : dzj) , for n --) w 

z,!Qn(Zj) z,f 

(15) 

(16) 

(17) 

(18) 

(19) 

By assumption, {Q,} E Z(u, b). Theorem 3.7 states that {Q,+,(z)/(ZkQ,(Z))> is a normal family 
in C\ [a, b]. Vitali’s Theorem and (19) yield the convergence of 

Q,+,(z) 

zkQn(4 
to an analytic function 4 in c\([u, b] u {O}) with I = ‘p(zj)/z,h for all j. Now the identity 
theorem for analytic functions completes the proof of our first assertion, because the points Zj 

have a limit point in c\[u, b]. The assertions on the Laurent series of p follow easily from 
(16). 0 

We need another simple lemma which provides bounds for 1 qn(z) 1 on E. 
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Lemma 3.10. Let (m,} be a strictly increasing sequence of integers. Then, 

and 

(20) 

(21) 

for each x0 with u({x,}) > 0. 

Proof. Both inequalities are elementary. 0 

Lemma 3.11. Let a < Iim inf,,,(a, -p,, - pn_r) and b > lim SUP~+~(~~ + P, + P,-1). Then no 
exists so that for all n 2 no the following statements hold. 

(i) Zfz 2 b and q,(z) 2 max(0, q,_I(z)j, then (q,(z)},.. is strictly increasing. 
(ii) Z~Z <a and (-l)“q,(z) 2 max{O, (-l)“-rq,_r(z)], then the sequem I(-lYq,(z)),.,, 

is strictly increasing. 
(iii) If z 2 b, then {q,(z)} has only finitely many sign changes. Zf z < a, then {( - l)‘q,(z)} has 

only finitely many sign changes. 

Proof. It suffices to choose no so large that a < cr, -& -/3n-1 <a,, +p, +p,-1 <b for all 
n > no. With the recurrence relations (2) our assertions (i) and (ii) easily follow by induction, 
and (iii) is a consequence of (i) and (ii). 0 

Corollary 3.12. Let z > sup(a, + /3, + pn_r). Then {q,(z)),., is strictly increasing. 

4. The main results 

We now have all the tools to prove our main results (cf. [13, Sections 3.3 and 4.11). Theorem 
4.1 and many related results were obtained by Nevai [13], but some of them had already been 
obtained by Blumenthal [2] in 1898, Van Vleck [21, p.2571 in 1904, and Shohat [16, Theorem 
XV] in 1934. 

Theorem 4.1. Let the polynomials q, be orthonormal with respect to t..~ E M(0, 1). Then the 
following statements are ualid. 

(i) supp ZA is the union of [ - 1, l] and a set B consisting of at most denumerably many points 
xj. B has no limit points outside [ - 1, l] and may be empty. 

(ii) For z E @ \ supp Z..L the ratios qn+ 1 (z)/q,( z) converge locally uniformly to @(z 1: 

qn+dz) 
q,(z) 

+@(z), forn+w. (22) 
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(iii) For z E supp p \[ - 1, 11 the ratios q,+ 1 (z)/q,(z) converge pointwise to @(z)-‘: 

%+1(Z) 1 
qn(4 

+ -q$ foYn+~. (23) 

(iv) For each x E R\ supp p, there exist E > 0 and no such that the polynomials q, possess no 
zero in [x - E, x + E]. for all n 2 Ito. For each x E supp I_L \ [ - 1, l] and sufficiently small E > 0, 
there exists an n,, so that for all n 2 n,, q, possesses exactly one zero in [x - E, x + E]. 

Proof. (a) First, we prove (22) for all z G j(p). Because of (3), Theorem 3.9 and p, --+ i, it is 
sufficient to demonstrate (22) pointwise for infinitely many z > b > sup{x: x E I’< p)}. Corollary 
3.12 and Q(z) > 1 for z > 1 yield 

with A,, > A,,, > 0 for all z > sup(a, + p,, +p,_l). With A,(z) -VI(Z), (22) follows for 
z > sup(k, + p, + p,_l) (cf. Theorem 2.4). This proves (22) for z E C\~((CL). 

(b) Secondly, we show [ - 1, l] c supp p. Let us suppose that there exists an open interval 
F c [ - 1, l] with p-measure 0. Th en Property 3.3 entails that no q, has more than one zero in 
F. Hence we can choose a subinterval F, E F which contains no zeros of qn, and q,_+ 1 for 
some subsequence (qn,) of {q,}. By Theorem 3.7 and (a), 

%+1(z) j qz> 

%I,(4 
7 

locally uniformly for z E F u (C\f(p)). But Q(z) cannot even be continued continuously to F, 
a contradiction. 

(c) By assumption, (Y, + 0 and p, + i. Lemma 3.ll(iii) yields that for real z @ [ - 1, 11, 
{q,(z)} has only finitely many sign changes. Now Property 3.4 shows that for each E > 0, there 
exists some N = N(E) such that each q, possesses no more than N zeros outside of [ - 1 - E, 
1 + El. 

Let xEsupp j~\[-l- E, 1 + E]. By I Q(x) I > 1 and (21), q,+,(x)/q,(x) + Q(x) is impossi- 
ble. As in (b), by Theorem 3.7 we obtain that for each 6 > 0 there exists an n, with q,(x,) = 0 
for some x, E [x - 6, x + 61 for all n 2 n,. Hence supp p \[ - 1 - E, 1 + E] contains N points 
at most, and to each of these (isolated) points one zero of qn converges. Now we conclude with 
Property 3.2 that there are no other zeros of q, outside of [ - 1 - E, 1 + E]. This completes the 
demonstration of (iv). 

(d) (iii) is true, because otherwise (22) would be valid in an environment of x, contradicting 
(c) and (21). Now (ii) follows from (a) and Theorem 3.7. q 

Our method allows us to prove a generalization of another theorem of Nevai [13, Theorem 
4.1.121. We remark that the condition of p having compact support can be dropped if z * # ~0. 
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Theorem 4.2. Let supp p be compact and z * E c\f(p>. If there exists any sequence ( zj} with 
limj,,tj = z * and the property 

qn+l('j) 

qn('j) 

+ @(zj), for all j, (24) 

then p EM(O, 1). 

Proof. We choose an arbitrary convergent subsequence {p, } of (p,,} with limit 0, 0 < p < 03. 
Then, by (3) and (24), for 
convergent, too: 

Qn,,,+l(Zj> : @(zj) 
zjQn,,,(zj> Pzj ' 

each zj the ratios of the manic orthogonal polynomials Q,_ are 

for m+w. 

But these ratios form a normal family in c\l’<pu>. Hence p > 0, and the Vitali Theorem implies 

Q%+,(Z) ; @@), for m~co 
zQ&> Pt 

7 

locally uniformly in c \ ( fi PL) U (0)). F rom Lemma 3.5, CD(Z) = 22 + O(z-‘1 for z + ~0 and (14), 
we easily conclude p = +. Thus /3,, + i and, by (181, we obtain CX, = qn_l,n - qn,rr+l + 0. 0 

4.1. The endpoints - 1 and 1 

Theorem 4.3. Let p E M(0, 1) and supp p = [ - 1, 11 U B. Zf B contains only finitely many points 
> 1, then 

qPz+1(1) --j) 1 

q,(l) . 

If B contains only finitely many points < - 1, then 

q?z+1(-1) ~ _1 

qk1) * 

Proof. If B contains exactly N points > 1, then by Property 3.2 at most N zeros of q, are 
greater than 1. Hence, by the interlacing property, the sign of q,(l) is constant for all n 2 n,, 
say positive. Let a be any limit point of {q .+r(l)/q,(l)). We already know a 2 0. We can prove 
by induction 

(Obviously lim ,,l(m + l)a - m>/( ma - (m - 1)) = 1 for all a.) Since the matrix-vector 
product is continuous and q,(l) > 0 for n > no (that is, qn+Jx) = (Cm + 1)a - m)q,_,(x)), this 
implies a 2 1. But then a > 1 is impossible, too, because (Cm + 1)a - m)/(ma - (m - 1)) + 1. 
So we obtain lim ,_mqn+l(l)/q,(l> = 1. Th e proof of our second claim is similar. 0 
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We remark that {q,(l)} has infinitely many sign changes, if supp ,U contains infinitely many 
points greater than 1. Therefore qntl (1)/q,(l) cannot converge in this case. 

5. Application to Pad6 approximants 

We define the Hamburger function fp by 

f,(z) := IE%. (25) 

fp is analytic in the domain c\(l/(supp p)}. The (n - 1, n&Pad& approximant [n - l/nlfp to 
fp is the unique rational function u, _ J z>/u,, _ J z) with 

V .-,,,<z>f,<z> - u,-l,n(~) = O(Z*~), for 2 + 0. (26) 

It is well known that the polynomials q,_l,,(z) := z”~,_Jl/t) are orthogonal with respect to 
p and that the polynomials P,_Jz) := z~-~LL,_~,~ (l/z> are the corresponding associated 
polynomials. We orthonormalize q,_ I,n. From Theorem 4.1 we obtain 

V 
lim 

n,n+l(Z) = lim %,+1(Z) 
=z lim 

4 

n+m v,-* n , (4 

.,,+i(l/Z) =z~ J_ 

n+m u,-1 n , (4 n*m 4,-1,$/z) i 1 z ’ 

locally uniformly for l/z P supp p. We also consider the residuals 

R n-l&) :=un-&)f&) -un-l,n(Z)* 

The polynomials v,_~,~ and u,_ l,n and the residuals satisfy the same recurrence relations 

(27) 

V n-I,&) =%Ll,n(Z) +Pn%I,n+l(z) +Z2Pn-14-2,n-1(4. 

For p E M(0, l), the characteristic polynomial of this difference equation is 

p,(h) = $2 -A + +z*, 

with zeros z@(l/z) and z/0$1/z). By Theorem 2.2 we conclude 

R n,n+l(Z) 

R n-l,&) + @(~I4 ’ 

pointwise for z @ supp p. The limit z @(l/z) is impossible, because by Markov’s Theorem the 
diagonal PadC approximants converge to f&z> locally uniformly for l/z @ supp p, and we have 

f,(z) - [vn + llfp(4 Rn,n+l(Z) %l,n(Z) 

f,(z) - [n - 1/4&) = Rn-I,&) %z,n+I(Z> . (29) 

The ratios (29) form a normal family, and therefore the convergence (28) is locally uniform. We 
mention that Markov’s Theorem follows immediately from the interlacing property of the zeros 

of P,- 1,n and a-1,n and the interpolation property (26) (cf. [9, p.471). 
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Sequences with ratio asymptotics can be accelerated by the AZ-method [3]. We define the 
A*-accelerated diagonal Pad6 approximants by 

]n + WI& 
:=[n+k-2/n-2]f&) 

([n+k-2/n-2],(2)-[n+k-l/n-l]&))* 
- 

[n+k-2/n-2]f~(z)-2[n+k-l/n-l]&)+[n+k/n]f~(z)’ 

We summarize the results in the following theorem. 

Theorem 5.1. Let p E M(0, 1). Then 

f,(z) - [n/n + llf,(4 1 
f,W - b - Wlf,W -j @(l/z)* ’ 

(30) 

locally uniformly for z @ supp p. Hence the convergence of the (n - 1, n)-Pad& approximants to 
fp can be accelerated by the A*-method: 

f&l - b/n + ll&) ~ o 
f,(z) - b/n + llf,(Z) * (31) 

Here we have given the proof for the uniform convergence. Parts of the proof of the 
pointwise convergence are due to [2]. The acceleration by the A*-method is locally uniform, too 
[5]. A similar theorem for row sequences was proved in [15, Section 41. 

Example 5.2. Let f,<z> = l/ /(l+z>. Then the polynomials 
polynomials of the second kind, and it is easy to compute 

f&l - b/n + 11a4 1 

f&z> - [n/n + ll&) + @(2/z + I)* ’ 
for zG(-03, - 

q,_ I,n are scaled Chebyshev 

11. 

Hence in this case the A*-method doubles the speed of convergence. 

Example 5.3. Another, more typical example is fcL(z) = log(1 + z)/z. Here the polynomials 
4, _ 1 n are scaled Legendre polynomials, and our numerical results strongly indicate 

f,(z) - [n - Wlgm 6 
f,(z) - [n -2/n - l];(z) 

f,(z) - [n -2/n - llf,W _ 1 + 
f,(Z) - [n - l/nlf,(Z> 

~ o 
2n-1 ’ 

locally uniformly for z e ( - 03, -11 (independently of z!). We can neither prove this relation 
nor conjecture the acceleration for arbitrary p EM(O, 11. 

In [5, Section 1.41 we derive asymptotics for polynomials with asymptotically periodic 
recurrence coefficients 

ff nm+k + ‘k and &mtk -+ bk, m fixed, n + ~0, 
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of period m. It is possible to generalize Theorem 5.1 to this class of measures. Theorem 5.1 
also holds for the Markov-type functions with complex weights considered in [ll]. 
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