| JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:236 |
| A Wilkinson-like multishift QR algorithm for symmetric eigenvalue problems and its global convergence | |
| Article; Proceedings Paper | |
| Aishima, Kensuke1  Matsuo, Takayasu1  Murota, Kazuo1  Sugihara, Masaaki1  | |
| [1] Univ Tokyo, Bunkyo Ku, Tokyo 113, Japan | |
| 关键词: Numerical linear algebra; Eigenvalue; Symmetric tridiagonal matrix; | |
| DOI : 10.1016/j.cam.2011.04.012 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In 1989, Bai and Demmel proposed the multishift QR algorithm for eigenvalue problems. Although the global convergence property of the algorithm (i.e., the convergence from any initial matrix) still remains an open question for general nonsymmetric matrices, in 1992 Jiang focused on symmetric tridiagonal case and gave a global convergence proof for the generalized Rayleigh quotient shifts. In this paper, we propose Wilkinson-like shifts, which reduce to the standard Wilkinson shift in the single shift case, and show a global convergence theorem. (c) 2011 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_cam_2011_04_012.pdf | 208KB |
PDF