期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:340
Block row projection method based on M-matrix splitting
Article
Zhang, Zhengyi1  Sameh, Ahmed H.1 
[1] Purdue Univ, Dept Comp Sci, 305 N Univ St, W Lafayette, IN 47907 USA
关键词: Numerical linear algebra;    Krylov subspace methods;    Preconditioners;    Block row projection;    M-matrix splitting;    Parallel numerical algorithms;   
DOI  :  10.1016/j.cam.2017.08.015
来源: Elsevier
PDF
【 摘 要 】

We propose a hybrid sparse linear system solver based on M-matrix splitting and block-row projection (BRP). We split the sparse coefficient matrix A into two (nonsingular) M-matrices, and construct an augmented larger linear system which we solve using a BRP method. The robustness of BRP is compared with those of ILUT-preconditioned GMRES, and the sparse direct solver Pardiso. We also demonstrate the parallel scalability of BRP on a cluster of multicore nodes. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2017_08_015.pdf 1128KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次