期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:49 |
END-POINT WEAK BOUNDEDNESS OF SOME POLYNOMIAL-EXPANSIONS | |
Article | |
GUADALUPE, JJ ; PEREZ, M ; RUIZ, FJ ; VARONA, JL | |
关键词: FOURIER-JACOBI SERIES; WEAK BOUNDEDNESS; ORTHOGONAL POLYNOMIALS; | |
DOI : 10.1016/0377-0427(93)90139-3 | |
来源: Elsevier | |
【 摘 要 】
Let w(x) = (1 - x)alpha(1 + x)beta on [-1, 1], alpha,beta greater-than-or-equal-to -1/2, and for each function f let S(n)f be the nth expansion in the corresponding orthonormal polynomials. We show that the operators f --> uS(n)(u-1f) are not of weak (p, p)-type, where u is another Jacobi weight and p is an endpoint of the interval of mean convergence. The same result is shown for expansions associated to measures of the form dnu = w(x) dx + SIGMA(i=1)(k)M(i)delta(alpha(i)).
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_0377-0427(93)90139-3.pdf | 590KB | download |