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Abstract

Guadalupe, J.J., M. Pérez, F.J. Ruiz and J.L. Varona, Endpoint weak boundedness of some polynomial
expansions, Journal of Computational and Applied Mathematics 49 (1993) 93-102.

Let w(x)=(1—x)*(1+ x)® on [-1,1], @,8 > — 1, and for each function f let S,f be the nth expansion in
the corresponding orthonormal polynomials. We show that the operators f— uS,(u~!f) are not of weak
(p, p)-type, where u is another Jacobi weight and p is an endpoint of the interval of mean convergence. The
same result is shown for expansions associated to measures of the form dv = w(x)dx + Zf;lM,-Sa,,.
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1. Introduction and main results

Let p be a positive measure on R with infinitely many points of increase and such that all the
moments

j[;%x" du, n=0,1,...,

exist. Let {P,}, . , stand for the corresponding orthonormal polynomials. For f € L'(dp), let S, f
denote the nth partial sum of the orthonormal Fourier expansion of f in {P,}

S,(£.0)= [FOK(. ) du(3). K,(x,3) = T o)),

nz=0"
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The problem of the uniform boundedness of the partial sum operators S, in weighted L”
spaces, that is,

S, f e < Cluf Lo, YR =0, VfELP(u? du), (1)

has been completely solved only in some specific cases (this boundedness implies, in rather
general situations, the L” convergence of S, f to f). For example, Badkov [3] gave necessary
and sufficient conditions for (1) when du and u are generalized Jacobi weights (earlier results
can be found in [15,21,22,24]). Orthogonal Hermite and Laguerre series were studied in
[1,16,17].

Let us consider the case of a Jacobi weight on the interval [—1, 1], that is, du = w(x) dx,

w(x)=(1-x)"(1+x)",
and let 1 <p <. If @, B> — 3, then (see [15])

1S, f ooy < Clf ey, ¥ =0, VFELP(w), (2)
if and only if p belongs to the open interval ( p,, p;), where

B 4a+1) 4(a+1)

Po= %03 1T a1

when « > B (and the analogous formulas with a replaced by B if B > a).

If both «, B > — 3, the authors proved (see [8]) that the nth partial sum operators are not of
weak ( p, p)-type when p is an endpoint of the interval of mean convegence. In Theorem 1 we
extend this result to the weighted case f— uS (u~'f), where u is also a Jacobi weight,
u(x) =1 —x)*(1 +x)?, a, b € R. Now, the weighted uniform boundedness (1) holds (see [15] if
and only if

1 1
a+(a+1)|——=||<min{], 3(a+ 1)},
p 2 (3)
1
b+ (B+1) o2 <min{}, 3(8 + 1)}.

Let us state our first result.

Theorem 1. Let a, B> — 4, w(x) = (1 —x)*(1 +x)#, u(x) = (1 —x)*(1 +x)’, 1 <p <. Let S,
be the partial sum operators associated to w. If there exists a constant C > 0 such that for every
f e LP(u”w) and for every n > 0,

“ uSnf HLi(w) < C” uf “L"(w)’
then the inequalities
1

2

<

1
2 4

a+(a+1)

1 b . 1
< +(B+

are verified.
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On the other hand, we also study the weak boundedness of the operators S, associated to a
measure dv = du + XX, M,5,, where u{a;} = 0. In the particular case of a Jacobi weight and
two mass points on 1 and — 1,' the corresponding orthonormal polynomials were studied in [10]
from the point of view of differential equations (see also [2,4,11,12]). The authors have found
(see [6]) some estimates for the orthonormal polynomials and kernels relative to this type of
measures.

In this context, let us consider the polynomial expansion associated to a measure dv =
w(x) dx + L M8, , where w(x) = (1 —x)*(1 +x)?, M;>0, and take u(x)=(1 —x)*(1 +x)
for x # a;, 0 <u(a;) < «. With this notation, we can state the following result.

Theorem 2. Let @, B> — 3, 1 <p <. Then, there exists a constant C >0 such that
||”Snf||Li(dv) <ClufllLoan, YfEL"(u? dv), Yn >0,

if and only if the inequalities

1

<_
4

a+(a+1)

1
<Z’ ‘b+(ﬁ+1)

p 2

are verified.

2. Preliminary lemmas

A basic tool in the study of Fourier series on the interval [—1, 1] is Pollard’s decomposition
of the kernels K, (x, t) (see [15,22]): if {P,}, ., is the sequence of polynomials orthonormal with
respect to w(x) dx and {Q,},., is the sequence of polynomials relating to (1 —x*)w(x) dx,
then

Ko (%, 1) =1, Ty (x, 1) +8,T5(x, 1) +5,T5 (%, 1),
where
Ty .(x, 1) =P, (x)P, (1),
P, 1(x)Q,(1) P a(1)Q,(x)
x—t t ’

Ty u(x, )= (1-1) -

: T;,(x, t)=(1—x2)
and {r,}, {s,} are bounded sequences. In fact, for any measure w on [—1, 1] with &’ > 0 a.e. (in
particular, for w(x) dx),

. 1 .
limr,= -3, lims, =3

(this can be deduced from [13,22,23]). Therefore, we can write
Snf= rnWl,nf+ SnWZ,nf_ an3,nf’
where

Wi (2) = Bi() [ By (1w(1) i,
Wonf (x) = Py (x)H((1— 12)Q,(0) F()w(t), x)
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and

Wi, f(x) = (1 =x*)Q,(x)H(P, () f(t)w(t), x),
H being the Hilbert transform on the interval [—1, 1]. Thus, the study of S, can be reduced to
that of W, ,i=1, 2, 3.

The boundedness of the Hilbert transform can be stated in terms of Muckenhoupt’s A,
classes of weights (see [9,19); throughout this paper, the Hilbert transform, as well as the A4,
classes, are taken on the interval [—1, 1]): if u is a weight on [—1, 1] and 1 <p <, then
u €A, if and only if H is a bounded operator in L”(u), with a constant which depends only on
the Ap constant o1 u.

Concerning mixed weak-norm inequalities for the Hilbert transform, we can state the
following property, which can be proved in the same way as [18, Theorem 3]: assume that u,(x),
u(x), v(x) >0, 1 <p <« and there is a constant C > 0 such that

lu,He llzup < CllglLeey, Ve &LP(v);

then, there exists another constant B > 0 which depends only on C, such that for every interval
1,

U(x)—l/(p—l) 1/q

1
WhXAhﬂm)[A(UW+|x—fodx < B, (4)

x,; being the centre of T and 1/p+1/g=1.
The polynomials P, satisfy the estimate

|P(x)] <C(1 —x) V41 +x)" @BV yp wxe[-1,1], (5)

with a constant C > 0 independent of x and n. A similar estimate is verified by Q,,, with a + 1
and B + 1 instead of « and B:

10, (x)|<C(1 —x) %1 +x) %P4 wn, Vxe[-1,1]. (6)

Thus, the following easy result will be useful.
Lemma 3. Let r €R. Then, |x|'€A,([-1,1) e —-1<r<p-—1.

The same property holds if we replace x by x —a, with a €[—1, 1]. Even more, it is not
difficult to show that in order to see whether a finite product of this type of expressions belongs
to A,, we only need to check the above inequalities for each factor separately.

We will eventually need to show that some of the operators are not of strong or weak type.
In this sense, the following lemma (see [14]) will be used.

Lemma 4. Let suppda=[—1,1], a’ >0 a.e. in [—1, 1], and 0 < p < . There exists a constant
C > 0 such that if g is a Lebesgue-measurable function on [—1, 1], then

—1/4

' —-1/2 . .
"0‘ (x) / (1 _xz) LP(gPdx) S Chfln_)lo?f”Pn“L”(]glpdx)’
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Vil el

There is a weak version of this property: it is a consequence of Kolmogorov’s condition (see
[5, Lemma V.2.8, p.485]) and the previous lemma.

Lemma 5. Let supp da=[—1,1], a’>0 a.e. in[—1, 1], and 0 < p < . There exists a constant
C > 0 such that if g, h are Lebesgue-measurable functions on [—1, 1], then

e ()71 = x2) g (x)|

Logihrdny <C lirr,n_)iilf” Pg |IL§(|h|”dx)‘
The following lemma will be useful to estimate some weighted L4 norms.

Lemma 6. Let 1 <p <o, r, sER, a>0. Then,

Xo.a(X)x " ELL(x*dx) < pr+s+120, (r,s)#(0, —1).
Moreover, in this case there is a constant K depending on r, s, p such that
zKar+(s+l)/p'

H X(©0.2)

3. Proof of Theorem 1

The weak boundedness

Aol
||u0nl lle(w) k/ll"‘J IL2(w)

implies the following conditions (see [8, Theorem 1], with the appropriate changes):

uels(w), u'eliw),
o, s o N—1/2,4 Xt VA IR
u(X)WUC) \1—)6) S Ly(W),

u(x) 'w(x)"(1 —xz)-l/4 e Li(w),
where 1/p + 1/g = 1. With the weight u(x) = (1 —x)*(1 + x)® and having in mind that a, 8 >
— 1, this means
1

~

<]

-P>|>—‘

a+(a+1){%—l]<%, b+(ﬂ+1)(%~l}<;

2] 4
Therefore, we only need to show that the equality cannot occur in the left-hand side of these
equations. Assume, for example,

1 (1 1)

——=a+{(a+1){——~= (7)

4 \z ~ 2)

T ot 11¢ econcidoar aogain Pallard’c dacamnacitinn af tha nartial gennme € £ Wa will mrava that thara
LA US CAULISIULL dpdliil DAt S UOLULLLPUSIUIUIL UL wiC paltidl SV 3, f VYO will pIUve uiatl uivie
exists a constant C such that

.. 117 £ 1 ralll P | 1y 74 £ 1 el il

4 nd ILEGW = < Cjiuf ”L”(w) ala - uwWs , J liLewy S CIW lLeow)

This, together with the boundedness of S, implies the same property for W, , and will lead to
a contradiction.
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(a) Boundedness of W, ,. From its definition, we have

” qu,nf L2(w) < ” uPn+ 1 “Lﬁ(w)“ u_an+ 1 ”L"(w)“ uf ”Lp(w)'

So, we only need to prove
4P, flLoon < C, ¥neN, and [u P, [l <C, YnEN,

which follows from Lemma 6, (5) and the dominated convergence theorem.
(b) Boundedness of W5,,. Using again (5) and (6), it is enough to obtain

| Hg oy < Cllgllrey, Vg e LP(v),
with
U(x) — (1 _x)a+ap+p(l*2a)/4(1 +x)B+bp+p(1f2ﬂ)/4.
Now, we only need to prove that v €A4 o This can be deduced from Lemma 3.

(c) From (a), (b) and the hypothesis, we have a constant C such that for all f€ L?(u?w) and
every n € N,

| uW, , f L2y < Clluf (lLrows
that is,

[P, Hg s < Cllu(x)(1 = x2) 7' Qu(x) w(x) g

Applying (4), we have

L#(w)"

-q 2\7 4 v
o)) w(x)dx) <c,

uP. . .x w
” n+1 1“L§Z( )( -1 (l]|+|x—x1|)q

for every interval I c[—1, 1], with a constant C > 0 independent of #n and I; by Lemma 5 with

I=[1—¢, 1)}, it follows
—aq+a/4+a(l—q/2) /g
L2(x®) dx|  <C. (&)

'/;) (e+|x—%e,)q

H x@-a/2-1/4

X[0,e]

Now, by Lemma 6 and (7),

“xa—a/2—1/4X[0’E] LoGe) =K (9)
and
1x—aq+q/4+a(l—q/2) 1 x /-1 1
—dx= - qu>Cf x/P-H-4 dx = C|log €,
0 (e+|x—%el) 0 (e+lx—§el) €

which, together with (9), leads to a contradiction in (8). Therefore, (7) cannot be true and the
theorem is proved.
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4. Adding mass points
Let du he a2 nacitive mMmeaciire Nnn A+ = A, L \"k A S where A > N '1[ l T at alen
Hl Uw })\}Dlllv\/ 1MW QAOWL W Vi) u\\, AS ¥4 \JM 1 “l=ll Va ’ ¥Y¥Yiliw il LVA ~ Ny H}‘ ) \)- uv\, o
u be a weight such that 0 <u(q;) <o, i=1,..., k. We will denote y {K,(x, y)} the kernels

relative to dp and by {L,(x, y)} the kernels relative to dv. Then, th e nth partial sum of the
Fourier series with respect to dv is given by

Saf(x) = | Lu(x, v)f(y) dv(y).
Let us take 1 <p <, 1/p+1/¢g=1 and

Tfr

nJ

\_/

= [ L,(x, y)f() du(y).
Then the following theorem holds.

Theorem 7. With the above notation, there exists a constant C such that
lluS fHL"(dv) Clluf Loy, Yn=0, VfELP(u? dv), (10)

(a) [l nf” @ SC
X'

(b) ula, )”u‘]_ o <C V20,
A i)l

(c)||uL (x a)||L,,(d)<Cu(a)V n>0,i=1,... k.

The same holds when replacing L%(dv) by L?

Proof. From the definition, it follows

k
Snf(X)=Tnf(X)+ ZMiLn(x’ ai)f(ai)' (11)
i=1
Now, suppose (10) holds. If fe L?(u” dv), let us define g(x) =f(x) for x #a,,i=1,...,k,
and gla)=0,i=1,..., k. Since u{{a;}) =0, we have S,g=T,f and
lug |Lrany = 14f Lo
Therefore, (10) implies

”1 Y>>0
e ViL = U = L

‘-'s

I, 2 cany < Clluf ||
~1 1]

» felL?P(u? dy) (12)
IL5(dv) vJ s UHg. \he)

n LA(dwp)» )

Taking now f=x,,,, we obtain S, f(x)=M,L,(x, a) and |uf ||, sq,, =M ?u(a,). Thus, (10)
also implies
| <Cu(a;), VYn=0,i=1,... k. (13)

Actually, since “”f “L”(dy-)’ ula))| f(a;)| < uf ||Lp(d,,) it is immediate from (11) that (12) and (13)
imply (10). So, we only need to show that (12) is equivalent to (a) and (b) and that (13) is the
same as (¢).

It is easy to see that

”uLn(x’ ai) f <“LLL ])p'Ln(aJ" ai)lp'

j=1
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Now, by Schwarz inequality we have
(e, @) <Ly(a;, 4))°L,(a;, a))”

and {L,(a;, a,)},. , is a bounded sequence, since u({a;}) > 0. Therefore,
luL,(x, ;)]

and (13) is actually equivalent to (c).
Let us examine now condition (12). It is easy to see that

14
rzaw TG,

lzz;(du) <|luL,(x, a;) ”ii(dv) <|luL,(x, a;)|

k
T, f 7 o < 1UT, f g + X Mu(a)’| T, f(a)[,
i=1

” uTnf ”ii(du) < ” uTnf ll;,,’;(dv) and Miu(ai)p‘ Tnf(ai) lp < “ uTnf “iﬁ(du)'
Thus, (12) holds if and only if condition (a) holds together with
w(@)| T, f(a)| < Cluf lura, Y10, VFELP(u? du), i=1,...,k.

Taking into acount that

T,f(a;) = fR L,(a;, x)f(x) du(x),

this last inequality is simply (b). O

The proof can be rewritten with L? norms instead of L% norms.
The operators 7, can be handled in a similar way to expansions with respect to du.
Regarding parts (b) and (c¢), let us introduce the following notation:
e du(x)=(x—-c)?* dulx);
« {P¢} is the sequence of orthonormal polynomials relative to du’;
o« PAx)=kix"+ -+, k>0
« {K:(x, y)} is the sequence of kernels relative to dpu°.
Then the following proposition holds (see [6]).

Proposition 8. Let du be a positive measure on R, c € R, M > 0. Let {16,1},1> o be the polynomials
orthonormal with respect to du + M8,. Then, for each n €N there exist two constants A,,
B, €(0, 1) such that

Pn(x) =AnPn(x) +Bn(x - C)Pnc—l(x)'
Furthermore, if supp du =[—1, 1], ' > 0 a.e. and c €[—1, 1], then

1 M
i K )= ———— d lmB,=—F7"—,
lm A4, K ()= ey @ m B Sy
where
AMc) = lim

n—w K,(c, c)’

We can also find some relations which involve the kernels.
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Proposition 9. ler du be a positive measure on R, c € R and M > 0. Let {K }, > o be the kernels
relative to du + M3_. Then Vn €N,

- 1 MK (¢, ¢)

K. (x,y)= mK"(X’ y)+ m(x—c)(y —c)K,_(x, ).

Propositions 8 and 9 lead to bounds for P, and K, provided bounds for P,, P¢, K, K¢ are
known. These bounds, together with Theorem 7, can be used to prove Theorem 2 (see [7]).
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