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Abstract 

Guadalupe, J.J., M. PCrez, F.J. Ruiz and J.L. Varona, Endpoint weak boundedness of some polynomial 
expansions, Journal of Computational and Applied Mathematics 49 (1993) 93-102. 

Let w(x) = (l- x)*(1 + xjp on [ - 1, 11, (Y,P > - 3, and for each function f let S,f be the nth expansion in 
the corresponding orthonormal polynomials. We show that the operators f- uS,(u-‘f) are not of weak 
(p, p&type, where u is another Jacobi weight and p is an endpoint of the interval of mean convergence. The 
same result is shown for expansions associated to measures of the form dv = w(x) dx + Cf= ,M,S,,. 
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1. Introduction and main results 

Let p be a positive measure on [w with infinitely many points of increase and such that all the 
moments 

/ xn +u, It = 0, 1,. a.7 
R 

exist. Let {P,}, > O stand for the corresponding orthonormal polynomials. For f E L’(dpLL), let S,f 
denote the nth partial sum of the orthonormal Fourier expansion of f in {Pnjnao: 

&(A x) = j/-f(~)K(x, Y) G(y), Kz(x, Y> = 2 f’,Jx)f’~(~)~ 
k=l 
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The problem of the uniform boundedness of the partial sum operators S, in weighted Lp 
spaces, that is, 

II uS,f IILW) G Clluf JIP(w, vn 2 0, ‘J~EL~W dp), (1) 

has been completely solved only in some specific cases (this boundedness implies, in rather 
general situations, the Lp convergence of S,f to f). For example, Badkov [3] gave necessary 
and sufficient conditions for (1) when dp and u are generalized Jacobi weights (earlier results 
can be found in [15,21,22,24]). Orthogonal Hermite and Laguerre series were studied in 
[1,16,17]. 

Let us consider the case of a Jacobi weight on the interval [ - 1, 11, that is, dp = w(x) dx, 

W(X) = (1 -x)(y(l +x)P, 

and let 1 <p < to. If CX, p 2 - 3, then (see [15]) 

IPnf II Lp(w) < CII f IILP(w), Vn 2 0, Vf ELPW, (4 
if and only if p belongs to the open interval (pa, pr), where 

4(c4! + 1) 4(a! + 1) 

“= 2a+3 ’ p’= 2a+l ’ 

when (Y > p (and the analogous formulas with cr replaced by p if p > a). 
If both cr, p > - 3, the authors proved (see [8]) that the nth partial sum operators are not of 

weak (p, p)-type when p is an endpoint of the interval of mean convegence. In Theorem 1 we 
extend this result to the weighted case f + uS,(u- ‘f ), where u is also a Jacobi weight, 
U(X) = (1 -x)“(l +x)~, a, b E R. Now, the weighted uniform boundedness (1) holds (see [15]) if 
and only if 

(3) 

Let us state our first result. 

Theorem 1. Let CX, p 2 - $, w(x) = (1 -x)“(l +xjP, u(x) = (1 -x)“(l +x)~, 1 <p < co. Let S, 
be the partial sum operators associated to w. If there exists a constant C > 0 such that for every 
f E LP(upw) and for every n 2 0, 

II uS,f IIL~bv) G CII uf lIL%v)~ 
then the inequalities 

()i+(iifl)(;-;)I<; 

are verified. 
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On the other hand, we also study the weak boundedness of the operators S, associated to a 
measure dv = dp + C~=,M$, , where ~{a~] = 0. In the particular case of a Jacobi weight and 
two mass points on 1 and - 1,’ the corresponding orthonormal polynomials were studied in [lo] 
from the point of view of differential equations (see also [2,4,11,12]). The authors have found 
(see [6]) some estimates for the orthonormal polynomials and kernels relative to this type of 
measures. 

In this context, let us consider the polynomial expansion associated to a measure dv = 
w(x) dx + ErClMj8a,, where w(x) = (1 -x)*(1 +xlp, Mi > 0, and take u(x) = (1 -x)“(l +xjb 
for x f ai, 0 < ~(a,> < ~0. With this notation, we can state the following result. 

Theorem 2. Let CY, /? > - i, 1 <p < ~0. Then, there exists a constant C > 0 such that 

IIuSlzf II L:(dv) G cii uf hdvb Vf E LP(up dv), Vn > 0, 

if and only if the inequalities 

la+@+l)(;-;) 

are verified. 

2. Preliminary lemmas 

1 
<i> 

11 1 

i II --_ 
P 2 <4 

A basic tool in the study of Fourier series on the interval [ - 1, l] is Pollard’s decomposition 
of the kernels K,(x, t) (see [l&22]): if {Pnjnao is the sequence of polynomials orthonormal with 
respect to w(x) dx and {&n}n>,, is the sequence of polynomials relating to (1 -x*>w(x> dx, 
then 

K(x, t> = r,Tr,,(x, t) +~,7’~,,(x, t> +s,&+(x, t), 

where 

T1,,(x, t> =C+l(xR+,(t)~ 

7&(x, t) = (1 - f*) 
Cz+,(-4Qn(t) 

T&X, t) = (1 -x2) 
c2+lwen(4 

x-t ’ t-x ) 
and {r,), {s,} are bounded sequences. In fact, for any measure ,U on [ - 1, 11 with CL’ > 0 a.e. (in 
particular, for w(x) dx), 

limr,= -3, lim s, = + 
n-m n+m 

(this can be deduced from [13,22,23]). Therefore, we can write 

&If = r,Y,,f + snW*,,f - srlW3,lzf 7 

where 

WI,,f(X) =P,,l(x)l_‘lP,,+,(t)f(t)w(r) dt, 

%,,f (4 = &+~(x)H((l- t’>Q,(t>f (t>w(t>, x) 
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and 

H being the Hilbert transform on the interval [ - 1, 11. Thus, the study of S, can be reduced to 
that of win, i = 1, 2, 3. 

The boundedness of the Hilbert transform can be stated in terms of Muckenhoupt’s A, 
classes of weights (see [9,19]; throughout this paper, the Hilbert transform, as well as the A, 
classes, are taken on the interval [ - 1, 11): if u is a weight on [ - 1, l] and 1 <p < to, then 
u E A, if and only if H is a bounded operator in LP(u), with a constant which depends only on 
the A, constant of u. 

Concerning mixed weak-norm inequalities for the Hilbert transform, we can state the 
following property, which can be proved in the same way as [18, Theorem 31: assume that ul(x), 
&l, u(x) > 0, 1 <p < CC and there is a constant C > 0 such that 

II u2Hg llL:(u,) G CII g IILP(U), Vg E LP( u>; 

then, there exists another constant B > 0 which depends only on C, such that for every interval 

44 
-l&-l) 

/-~l~lIl+,x_x,,~~dx (4) 

x1 being the centre of I and l/p + l/q = 1. 
The polynomials P,, satisfy the estimate 

IP,(x)j < C(1 -X)-(2a+1)‘4(1 +x)-(2p+1)‘4, Vn, vx E [ -1, 11, (5) 

with a constant C > 0 independent of x and it. A similar estimate is verified by Q,, with (Y + 1 
and /3 + 1 instead of (Y and p: 

IQ,(x)/ < C(l -~)-(~~+~)‘~(l +x)-(~‘+~)‘~, Vn, Vx E [ -1, l]. (6) 

Thus, the following easy result will be useful. 

Lemma 3. Let r E R. Then, )x jr EAJ[ - 1, 11) e - 1 < Y <p - 1. 

The same property holds if we replace x by x - a, with a E [ - 1, 11. Even more, it is not 
difficult to show that in order to see whether a finite product of this type of expressions belongs 
to A,, we only need to check the above inequalities for each factor separately. 

We will eventually need to show that some of the operators are not of strong or weak type. 
In this sense, the following lemma (see [14]) will be used. 

Lemma 4. Let supp da = [ - 1, 11, a’ > 0 a.e. in [ - 1, 11, and 0 <p < a. There exists a constant 
C > 0 such that if g is a Lebesgue-measurable function on [ - 1, 11, then 

ll”r(x)-1’2(l -x2)-1’411LP(,glPdx) G Clim wIPnIILq,g~dx,~ 
n+m 
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There is a weak version of this property: it is a consequence of Kolmogorov’s condition (see 
[5, Lemma V.2.8, p.4851) and the previous lemma. 

Lemma 5. Let supp da = [ - 1, 11, CY’ > 0 a.e. in [ - 1, 11, and 0 <p < w. There exists a constant 
C > 0 such that if g, h are Lebesgue-measurable functions on [ - 1, 11, then 

11+-“2(1 -X2)-1’4g(X)IILE(,lrJ’dx) G c lim infII~,gll,~(,h,Pdx). 
n-m 

The following lemma will be useful to estimate some weighted LP, norms. 

Lemma 6. Let 1 G p < a, r, s E R, a > 0. Then, 

x~~,~)(x)x~EL$(x~ dx) = pr+s+l&O, (r, s)f(O, -1). 

Moreouer, in this case there is a constant K depending on r, s, p such that 

IIx(O,a)(X)X’IIL$(xS dx) = Ka’+(“+‘)‘P’ 

3. Proof of Theorem 1 

The weak boundedness 

IWnf II Lp(w) G CII 4 IIL”Cw, 
implies the following conditions (see [8, Theorem 11, with the appropriate changes): 

u EG.(W), u-r E Lq(w), 

U(x)W(x)-1’2(1 -xz)-1’4 f3 Lp,(w), 

u(x))‘w(x)-“‘“(1 -x2)-1’4 E L4(w), 

where l/p + l/q = 1. With the weight u(x) = (1 -x)“(l +x)~ and having in mind that (Y, p 2 
- 4, this means 

-&6+(/3+1) 

Therefore, we only need to show that the equality cannot occur in the left-hand side of these 
equations. Assume, for example, 

-i=a+(u+l) b-i’. i 1 (7) 

Let us consider again Pollard’s decomposition of the partial sums S,f. We will prove that there 
exists a constant C such that 

II UJ+-r,nf IILCM G CM llL%v) and II U%,nf lIL%v) i Cl1 4 IILW. 
This, together with the boundedness of S,, implies the same property for W,., and will lead to 
a contradiction. 
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(a) Boundedness of WI,,. From its definition, we have 

II ~W1,n.f IILCCW, =G II cz+1 lIL”,(w~ll u-‘ez+1 IlLWll uf lILW* 

So, we only need to prove 

IIUP, lL~*b4 < C, vn E h and ((u-‘P, ((L4(Wj G C, V’n E N, 

which follows from Lemma 6, (5) and the dominated convergence theorem. 
(b) Boundedness of W,,,. Using again (5) and (61, it is enough to obtain 

II Hg IILW G CII g IIP(d7 vg E qu)Y 
with 

U(X) = (1 -x) ~+u,,+~(l-2n)/4(~ +x)P+6~+p(l-2P)/4a 

Now, we only need to prove that u EAT. This can be deduced from Lemma 3. 
cc> From (a>, (b) and the hypothesis, we have a constant C such that for all f~ LP(upw) and 

every n E N, 

II uw2,n.f lILp,h) G Cll uf IILW 
that is, 

(Iup,+,Hg(I,E(,,~C~~~(~)(l -x’)-‘e,(x)-‘w(x)-‘gl/,,(,). 

Applying (41, we have 

1 
II ~el+1X, IlL~b4 / 

4x>-“(1 -~‘)“~Q,(~>~“W dx 1’q < c 
_1 

(W +b -4)” ’ ’ 

for every interval I c [ - 1, 11, with a constant C > 0 independent of n and I; by Lemma 5 with 
I = [l - E, 11, it follows 

1 X-aq+q/4+a(l-_q/2) l/q 

II Xa-a/2-1/4 

dx G ca 

Now, by Lemma 6 and (71, 

II Xa-n’2-1’4X[0,t] Le(p) II =K 

(8) 

(9) 
and 

1 _yaq+q/Q+a(l-_q/2) 

‘x’/(~-~)-~ dx = Cllog E 1, 

which, together with (9), leads to a contradiction in (8). Therefore, (7) cannot be true and the 
theorem is proved. 
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4. Adding mass points 

Let dp be a positive measure on I?,, dv = dp + C~+,Mi6, , where Mi > 0, ~{a~) = 0. Let also 
u be a weight such that 0 < ~(a,> < 00, i = 1,. . . , k. We will denote by {K,(x, y>> the kernels 
relative to dp and by {L,(x, y)] the kernels relative to dv. Then, the nth partial sum of the 
Fourier series with respect to dv is given by 

%I.+) = j--L& Y)f(Y) d4+ 

Let us take 1 <p < ~0, l/p + l/g = 1 and 

V(x) =/LAG Y)~(Y) d/-Q). 
R 

Then the following theorem holds. 

Theorem 7. With the above notation, there exists a constant C such that 

Ilu%f lILE(dV) < CIJ uf JJp(c,v), Vn >, 0, v’f~ LP(ua dv), 

if and only if there exists another constant C such that 

(a) IluT,f IILP(dP) G CII uf IIP(d/q VfE LP(uP d/J), 
(b) u(a,)((u*‘L,(x, ai)((Lqcdpj<C, Vn > 0, i= I,..., k, 

(c) II uL(x, 4 llL<(dp) < Cu(a,), Vn > 0, i = 1,. . . , k. 
The same holds when replacing LP,(dv) by LPCdv) and L$(dp) by LP(dF.). 

(10) 

Proof. From the definition, it follows 

S,f(x) = T,f(x) + 5 MiL,(x, ai)f(ai)* 
i=l 

(11) 

NOW, suppose (10) holds. If f~ Lp(up dv), let us define g(x) =f(x) for x Z ai, i = 1,. . . , k, 
and g(a,) = 0, i = 1,. . . , k. Since &{aJ) = 0, we have S,g = T, f and 

11 ug IMP’ = II Uf IIP(d& 

Therefore, (10) implies 

11 uT,.f /Lfl(du) G cl1 uf bYd/h Vn > 0, Vf E Lp(up dv). (12) 

Taking now f = ,yta,), we obtain S, f(x) = M,L,(x, ai> and I( uf IILp(&,) = M)/Pu(a,>. Thus, (10) 
also implies 

1) uL,( x, ai) (IL$(&,) 6 Cu( a,), vn 2 0, i = 1,. . . , k. (13) 
Actually, since 11 uf iILP(&+ uh)l fcai) I G 11 uf iLP(dv) it is immediate from (11) that (12) and (13) 
imply (10). So, we only need to show that (12) is equivalent to (a) and (b) and that (13) is the 
same as (c). 

It is easy to see that 



100 J.J. Guadalupe et al. / Boundedness of polynomial expansions 

Now, by Schwarz inequality we have 

(L,(aj, ui)( <L,(aj> aj)1’2Ln(aiY a,)1’2 

and {&Jai, aiNn,, is a bounded sequence, since E.L({u~]) > 0. Therefore, 

II uLn(x7 ‘i> I(pL$CClw) G II ~L(~~ 4 IIpL$Cdv, G II ~L(~~ d&L, + c, 

and (13) is actually equivalent to (cl. 
Let us examine now condition (12). It is easy to see that 

II Gnf IlPLp;~d~~ G II Gnf Il:B~dd and we4al vG4 Ip f II Cnf II~PW 
Thus, (12) holds if and only if condition (a) holds together with 

~(ui)lT,f(Ui)l ~CIlufllLP(d~~), V’n~O, tlf~“(u’d~), ‘=l,...,‘. 

Taking into acount that 

T,f(ai) = /RLn(ui, x)f(x) dP(x)y 

this last inequality is simply (b). q 

The proof can be rewritten with Lp norms instead of LP, norms. 
The operators T, can be handled in a similar way to expansions with respect to dp. 

Regarding parts (b) and (c), let us introduce the following notation: 
. d/J(X) = (X - cl2 d&j; 
. {P,“} is the sequence of orthonormal polynomials relative to d$; 
. P;(X)=+“+ ***, ki>O; 
. {Kz(x, y)] is th e sequence of kernels relative to d$. 

Then the following proposition holds (see [6]). 

Proposition 8. Let d/l. be a positive measure on R, c E R, M > 0. Let {&I,, > 0 be the polynomials 
orthonormul with respect to dp + Ma,. Then, for each n E N there exist two constants A,, 
B, E (0, 1) such that 

&(x) =A,$‘,@) + BJx - ~)Pn”_~(x). 

Furthermore, if supp dp = [ -1, 11, p’> 0 u.e. and c E [ -1, 11, then 

1 M 
lim A,K,_I(c, c) = and lim B, = 
?z+m A(c) + M tz+m h(c) +M’ 

where 

1 
A(c) = lim 

n+m K,(c, c) * 

We can also find some relations which involve the kernels. 



Proposition 9. let dp 
relative to dp + Ma,. 

B,(x, Y) = 
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be a positive measure on R, c E R and M > 0. Let {I?,},, > 0 be the kernels 
Then Vn E N, 

1 

1 + MK,(c, c) 
K,(x, Y) + 

MK,(c, c) 
1 +MK (c c) (x - C)(Y -c)KXx, Y)* 

n 7 

Propositions 8 and 9 lead to bounds for p,, and d,, provided bounds for P,, P,“, K,, K,” are 
known. These bounds, together with Theorem 7, can be used to prove Theorem 2 (see [7]). 
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