期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:229
A note on constrained degree reduction of polynomials in Bernstein-Bezier form over simplex domain
Article
Lu, Lizheng1 
[1] Zhejiang Gongshang Univ, Coll Stat & Math, Hangzhou 310018, Peoples R China
关键词: Simplex domain;    Bernstein polynomials;    Constrained degree reduction;    Degree elevation;   
DOI  :  10.1016/j.cam.2008.10.032
来源: Elsevier
PDF
【 摘 要 】

In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein-Bezier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14-19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d-dimensional simplex domain in L-2-norm equals the best approximation of weighted Euclidean norm of the Bernstein-Bezier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when d >= 2. Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction. (C) 2008 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2008_10_032.pdf 273KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次