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a b s t r a c t

In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in
Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19],
Kim and Ahn proved that the best constrained degree reduction of a polynomial over
d-dimensional simplex domain in L2-norm equals the best approximation of weighted
Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper,
we presented a counterexample to show that the approximating polynomial of lower
degree to a polynomial is virtually non-existent when d ≥ 2. Furthermore, we provide an
assumption to guarantee the existence of solution for the constrained degree reduction.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Following the notations in [2], the Bernstein basis of degree n over the d-dimensional (d ≥ 1) simplex domain ∆ is
defined by

Bnα(x) =
( n
α

)
xα
(
1−

d∑
i=1

xi

)n−|α|
, |α| ≤ n,

where x = (x1, . . . , xd) ∈ ∆ and xα = x
α1
1 · · · x

αd
d . We write polynomials in Bernstein–Bézier form as

Bnb := [Bnα]|α|≤n · [bα]|α|≤n =
∑
|α|≤n

Bnα(x)bα.

Let Pn be the linear space of polynomials of degree less than or equal to n. For the nonnegative integer a ≤ n/(d+ 1), let

Ian = {|α| ≤ n:α1 ≥ a, . . . , αd ≥ a, |α| ≤ n− a} ,

Jan =
{
|α| ≤ n:α 6∈ Ian

}
.

In the paper [2], Kim and Ahn have considered the best constrained degree reduction over simplex domain:

Theorem 1 ([2, Theorem 3]). Given a polynomial Bnb of degree n, the approximation problem

min
p∈Pm

{∥∥Bnb− p∥∥ : p = Bnc ∈ Pm, bα = cα for α ∈ Jan
}

has the same minimizer for the norm induced either by the L2-inner product or the weighted Euclidean inner product.
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When a = 0, Jan becomes an empty set, which means that the degree reduction is unconstrained. So, we assume from
now on that a ≥ 1. To solve the constrained approximation problem in Theorem 1, the following assumption must hold;
otherwise, the degree reduction may be unable to be carried out since we cannot guarantee the existence of a degree m
polynomial satisfying the constraint conditions described in Theorem 1.

Assumption 1. For a given polynomial Bnb of degree n, there exists a polynomial p of lower degreem such that

p = Bnc ∈ Pm, bα = cα for α ∈ Jan .

For the one-dimensional case, i.e., d = 1, Assumption 1 is verified to be always satisfied, see [1]. However, for d ≥ 2,
the situation is different. We can find many polynomials that satisfy it, for example, the polynomial Bnbwith bα = 0 for all
α ∈ Jan . On the other hand, we give a simple counterexample in the following.

Example 1. For d ≥ 2, let a = 1, and let bα = 0 for all α ∈ Jan except b(n,0,...,0) = 1. Then the polynomial p = B
nc , satisfying

cα = bα for α ∈ Jan , has a degree of nwhatever the chosen values of [cα]α∈Ian .

Proof. For any α ∈ Ian , noting that α1 + n− |α| ≤ n− 1 since α2 ≥ 1, we have

∂n

∂xn1
Bnα(x) =

( n
α

) ∂n
∂xn1
xα11 · · · x

αd
d

(
1−

d∑
i=1

xi

)n−|α|
= 0.

Then, we express p as

p =
∑
|α|≤n

Bnα(x)cα = x
n
1 +

∑
α∈Ian

Bnα(x)cα.

Finally, from

∂np
∂xn1
=
∂nxn1
∂xn1
+

∑
α∈Ian

cα
∂n

∂xn1
Bnα(x) = n!,

we can conclude that the polynomial p has a degree of n. �

Assumption 2. For a given polynomial Bnb of degree n, the constrained coefficients [bα]α∈Jan are the parts of the coefficients
of a degree n polynomial which is raised from a certain polynomial Bmc of degreem, i.e., there exists amatrix T (that depends
only on n andm) such that

[bα]α∈Jan = T · [cβ ]β∈Jam . (1)

Also, [cβ ]β∈Jam are the parts of the coefficients of the degreem polynomial after degree reduction.

The linear system (1) shows that the constrained coefficients [cβ ]β∈Jam after degree reduction are closely related to the
constrained coefficients [bα]α∈Jan of the given polynomial. Actually, it can be used to calculate the constrained coefficients.
This is because if the approximate polynomial is degree raised to degree n, its corresponding constrained coefficients must
agree with [bα]α∈Jan . The derivation of the matrix T will be discussed in Section 2 and can be obtained from (3).
If the given polynomial satisfies Assumption 2, we can guarantee the existence of solution for the constrained degree

reduction. In essence, Assumptions 1 and 2 are equivalent. But actually the latter one is more computationally feasible. In
Theorem 3, we will show the reason why Assumption 2 is always satisfied when d = 1. And in Theorem 4, we will show the
reason why Assumption 2 is not always satisfied when d ≥ 2.

2. Discussions and remarks

For raising the degree of the polynomial p = Bmc by one without changing its shape, i.e.,

p = Bmc = Bm+1c(1),

we can show that the new coefficients c(1)α are obtained from linear combinations of the old ones

c(1)α =
α1

m+ 1
cα−e1 + · · · +

αd

m+ 1
cα−ed +

m+ 1− |α|
m+ 1

cα, |α| ≤ m+ 1, (2)

where e1, . . . , ed are the standard unit vectors of Rd. We can rewrite (2) in matrix form c(1) = Tm+1,mc.
After repeating this process r = n−m times, the coefficients c(r)α of the polynomial p = B

nc(r) are given by

c(r)α =
∑
β+γ=α
|β|≤m, |γ |≤r

(
m
β

) (
r
γ

)
( n
α

) cβ , |α| ≤ n. (3)
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Similarly, we rewrite (3) as c(r) = Tn,mc , where Tn,m can also be decomposed into elementary degree-raising steps as

Tn,m = Tn,n−1Tn−1,n−2 · · · Tm+1,m.

Theorem 2. Let p = Bmc = Bnc(r), n = m+ r be a polynomial of degree m. Then it satisfies Assumption 2.

Proof. For any coefficient c(r)α , α ∈ J
a
n , we can see from (3) that c

(r)
α is a linear combination of the coefficients cβ , |β| ≤ m.

Hence, to prove the theorem, it is equivalent to showing that all β ∈ Jam for any α ∈ J
a
n . Otherwise, suppose that β ∈ I

a
m. We

then have

β1 ≥ a, . . . , βd ≥ a, m− |β| ≥ a.

Noting that α = β + γ = (β1 + γ1, . . . , βd + γd), we obtain

α1 ≥ a, . . . , αd ≥ a

and

n− |α| = n− |β| − |γ | ≥ n− |β| − r = m− |β| ≥ a,

which means α ∈ Ian . This is a contradiction. �

We indicate the cardinalities of the sets Ian and J
a
n as follows.

Lemma 1. For the integer n, let a ≤ n/(d+ 1). Then,

(1) card(Ian) =
(
n−(d+1)a+d

d

)
,

(2) card( Jan) =
(
n+d
d

)
−

(
n−(d+1)a+d

d

)
.

Theorem 3. When d = 1, linear system (1) is well-determined.

Proof. From Lemma 1, we obtain

card(Jam) = card(J
a
n) = 2a.

In this case, (3) becomes (α = α1, β = β1)

c(r)α =
min(m,α)∑

β=max(0,α−r)

(
m
β

) (
r

α−β

)
( n
α

) cβ , α = 0, 1, . . . , n.

Thus, the matrix T in (1) is a square matrix and is nonsingular. �

Theorem 4. When d ≥ 2, the linear system (1) is over-determined.

Proof. Denote

Jam = J
a,1
m ∪ J

a,2
m :=

{
α ∈ Jam: ∃ i, αi < a

}
∪
{
α ∈ Jam:α1 ≥ a, . . . , αd ≥ a, |α| > m− a

}
.

Ifα ∈ Ja,1m , it is obvious thatα ∈ J
a
n . Ifα ∈ J

a,2
m , we can find the corresponding element (α1+r, α2, . . . , αd) ∈ J

a
n . Furthermore,

we can easily get an index α = (0, . . . , 0, n) such that α ∈ Jan and α 6∈ J
a
m. Therefore,

card(Jam) < card(J
a
n). �
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