期刊论文详细信息
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 卷:383
Randomized derivative-free Milstein algorithm for efficient approximation of solutions of SDEs under noisy information
Article
Morkisz, Pawel M.1,2  Przybylowicz, Pawel1 
[1] AGH Univ Sci & Technol, Fac Appl Math, Al A Mickiewcza 30, PL-30059 Krakow, Poland
[2] NVIDIA Poland, Warsaw, Poland
关键词: SDEs;    Standard noisy information;    Pointwise approximation;    Randomized Milstein algorithm;    nth minimal error;    Optimality;   
DOI  :  10.1016/j.cam.2020.113112
来源: Elsevier
PDF
【 摘 要 】

We deal with pointwise approximation of solutions of scalar stochastic differential equations in the presence of informational noise about underlying drift and diffusion coefficients. We define a randomized derivative-free version of Milstein algorithm A(n)(-df-RM )and investigate its error. We also study the lower bounds on the error of arbitrary algorithm. It turns out that in some case the scheme A(n)(-df-RM ) is the optimal one. Finally, in order to test the algorithm A(n)(-df-RM ) in practice, we report performed numerical experiments. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_cam_2020_113112.pdf 851KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次