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1. Introduction

In this paper we deal with pointwise approximation of solutions of the following scalar stochastic differential equations
(SDEs)

dX(t) = a(t, X(t))dt + b(t, X(t))dW(t), t e][0,T], (1)
X(0) =n,

where T > 0, n is an initial-value, and W = {W(t)};>0 is a standard one-dimensional Wiener process on some probability
space (£2, X, P). We will assume that only noisy evaluations of a and b are allowed. The aim is to find an efficient
approximation of X(T) with an (asymptotic) error as small as possible.

The problem of approximation of solutions of SDEs under exact information about coefficients is well studied in
literature, see, for example, the standard reference [1]. Much less is known when values of drift and diffusion coefficients
are corrupted by some noise. Therefore, in this paper we assume that evaluations of the underlying coefficients are
permissible only at certain precision levels. Such a disturbance may be caused by, for example, measurement errors,
rounding errors, and lowering precision when performing computations on GPUs, see Remark 2 and [2,3] for further
discussions and examples.

In literature there are many results on numerical problems under noisy information, such as integrating or approxi-
mation of regular functions [3-5], L, approximation of piecewise regular functions [6], solutions of IVPs [7] or PDEs [8,9].
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For stochastic case we refer to [10] and [11] where authors studied approximation of, respectively, SDEs under noisy
information by randomized Euler scheme and stochastic It6 integration in the case when also the values of the Wiener
process W were inexact.

In this paper we extend the results obtained in [10]. Namely, we study approximation of solutions of SDEs by a
randomized version of Milstein scheme under noisy information. For exact information such a version of the Milstein
scheme was investigated in [12]. Here, however, we use its derivative free version in order to cover also the case of
inexact information. Hence, our proof technique differs from that used in [12].

We use a suitable computation setting that allows us to model a situation when values of a’s and b’s are perturbed by
some deterministic noise, see [10]. Namely, let §;, §; € [0, 1] be the precision levels corresponding to drift and diffusion
coefficients, respectively. (The case of §; = §, = 0 corresponds to the exact information.) Available standard information
about each coefficient consists of noisy evaluations of the coefficients at a finite number of points (t;, y;) € [0, T] x R. This
means that, for example, for diffusion coefficient b and for a given point (t;, y;) € [0, T] x R evaluation returns b(t;, y;)
with the property that |b(t;, y;) — b(t;, yi)| < 82(1+ |yi|). Moreover, as in [10] for a = a(t, y) we allow randomized choices
of sample points with respect to the time variable t. For the Wiener process W we assume that the information is exact,
i.e. it is given by the values of W at a finite number of points s; € [0, T]. (See, however, Remark 4.) The error of the
algorithm, using the information above, is measured in the gth mean (¢ > 1) maximized over the class of input data
(a, b, n) and over all permissible information about (a, b, n) with the given precisions 8, §; > 0.

Theorem 2, which is the main result of the paper, states that the nth minimal error (under suitably regular informa-
tional noise) is asymptotically equal to ®(n~ min{3-+71.72) + 81+ 8,) where the factors in ® do not depend on &1, 8,. (Here,
¥1, Y2 € (0, 1] are the Holder exponents, with respect to time variable, of drift and diffusion coefficients, respectively.) A
randomized derivative-free version Aﬁ F=RM' of the classical Milstein algorithm is defined, which uses noisy evaluations of
drift and diffusion coefficients, and attams the desired rate of convergence. When the disturbances for a and b are more
rough, then error term for the scheme A,, ~fM-also depends on 8,n'/?, see Theorem 1 (ii). This implies that in order to
obtain any convergence rate it is necessary to tend with both precision levels to zero suitably fast with respect to n.

The paper is organized as follows. Section 2 c0n51sts of the problem formulation, basic notions and definitions.
Randomized derivative-free Milstein algorithm An “*M under perturbed information together with the upper bounds on
its error are presented in Section 3. In Section 4 we show the lower bound on the worst case error for an arbitrary
algorithm (Lemma 3). This leads to the conclusion that randomized Mllstem algorithm An R s optimal (Theorem 2).
Section 5 reports the numerical experiments performed for the algorithm An —RM Finally, the Appendix contains auxiliary
facts used in the paper.

2. Preliminaries

Let T > 0. We denote by N = {1,2,...}. Let W = {W(t)};>o be a standard one-dimensional Wiener process on a
complete probability space (£2, X', P). We denote by {X;};>¢ a filtration, satisfying the usual conditions, such that W is

a Wiener process on (£2, X', P) with respect to {X};>o. Let oo = 0 U[ZO Et>. For a random variable X : 2 — R we
write [|X[lq = (E|X|?)"/9, where q € [2, +oo) A continuous function f : [0, T] x R — R belongs to C%/([0, T] x R), with

j € NU {0}, provided that for all k =0, 1, ..., j the partial derivatives 3*f/dy* exist and are continuous on [0, T] x R.
For any f € C%'([0, T] x R) by L; we mean the following differential operator

0
hﬂhwszy%5%LW-

We will also use its derivative-free version. Namely, for f € C([0, T] x R) and h > 0 the difference operator £y is given
as follows

Lynf (6, y) =f(t.y) - Anf(L.y),

where
+ h -

(Basic properties of Ly and £1 p, used in the paper, are gathered in the Appendix.)
Let K > 0 and y € (0, 1]. We say that f : [0, T] x R — R belongs to the function class F,i’ iff for all t,s € [0, T] and
all y, z € R it satisfies the following assumptions:

i) f € C%% ([0, T] x R),

(ii) If(0,0)] < K,

(iii) f(t,y) —f(t, 2)] < Kly — 2],

(iv) If(t,y) — f(S VI <K@+ |yt —s)”,
) f

W) | y) = &t 2)| <Kly —zl.
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In this paper we will be considering drift coefficients a from the following class

of of
Ben-5

A = {f eF (5, 9) <K@+ |yt —s|” forallt,s € [0,T],y € R},

while we will be assuming that diffusion coefficients are from
B2 = [f cFP } ILf(t,y) — Lif (£, 2)] < K|y —z| for all t € [0, T1,y,7 € R].

Moreover, let
Jd=1{n:92 — R|nis ¥ — measurable, E|5|* < K}.

For y1, y» € (0, 1], q € [2, 400), K € (0, +00) we consider the following class of admissible input data
Fyi, v2, 4, K) = AY' x B x .

For all (a, b, n) € F(y1, y2,q,K) Eq. (1) has a unique strong solution {X(t)};c[o.77, that is adapted to {X;};c0.1], See, for
example, [ 13]. The numbers T, K, q, 1, y» will be called parameters of the class F(y1, y», q, K). Except for T the parameters
are, in general, not known and the algorithms presented later on will not use them as input parameters.

Under some minor modifications, we recall from [10] a model of computation under inexact information about a’s and
b’s. To do that we need to introduce the following auxiliary classes:

K'={p:[0,T] xR — R | p— Borel measurable , |p(t,y)| < 1+ |y|,t € [0,T],y € R},
Kl ={p ek |Ip(t,y)—p(t,2)] <|y—z|.t €[0,T],y,z € R},

and
K*={pek|Ip(t,y)l <1,t €[0,T],y € R},

see also [11]. The classes Iclip, c? are nonempty and contain constant functions. (This is an important fact from the point
of view of lower error bounds, see [10].) Let §1, §, € [0, 1]. We refer to &1, §, as to precision parameters. For a € A}? we
define the following class of corrupted drift coefficients

Va((Sl) = {a | Elme)d rad=a + 51 'pa},

while for b € Bl’? we consider the following two classes of corrupted diffusion coefficients
Vy(82)=1{b| Hpbe/cgip :b=b+8 - p,

and
V2(8) =1{b | 3y,cx2 : b=b+5py}.

Note that we impose more smoothness for corrupting functions p,’s than for p,’s. This is due to some technicalities, see
Remark 3. We have that {a} = V4(0) C Vq(81) C Vu(8}) for 0 < §; < &) < 1, and {b} = V}(0) C Vi(82) C V[(8,) for
0<é<é <1fori=1,2.

For (a, b, n) € F(y1, v2, 4, K) let (&, b) € V4(81) x (V,(82)UV2(8,)). We assume that the approximation method is based
on discrete noisy information about (a, b) and exact information about W, and 5. Hence, a vector of noisy information
has the following form

N(@,b,n, W) = [ a(&o, yo), a(&1, ¥1)s - - -, al&i -1, Yiy—1)s

b(to. z0). b(t1. 21). . ... B(ti, 1. 23, 1),

b(to, ug), b(t1, u1), ..., b(ty—1, ui;—1),

W(so), W(st) ... Wis,-1). |,
where iy, i; € N and (&, &1, ..., &;,-1) is a random vector on (£2, ¥, P) which takes values in [0, T]'1. We assume that
the o-fields o (&, &1, ..., &;,—1) and X, are independent. Moreover, fg, ty, ..., t;—1 € [0, T] and $o, 1, ..., S;,—1 € [0, T]
are given time points. We assume that t; # t;, s; # s; for all i # j. The evaluation points y;, z;, u; for the spatial variables
y,zof a(-,y), b(-, z), and b(-, u) can be given in adaptive way with respect to (a, b, n) and W. This means that there exist

Borel measurable mappings ¥ : R? x R — R3, ¢; : RN x RN x R x R2 x R — R3,j = 1,2,...,i; — 1, such that the
successive points y;, z; are computed in the following way:

(Vo 20, o) = Yo (W(so). W(s1). ... Wisi-1). ),
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where

(y]» Zj, u]) = VI] ( 5(507 y0)5 a(Sl»}’I )7 cee a(sj—l,}’j—l),

b(to, z0), b(t1, 1), ..., b(tj_1,Zi_1),
b(to, uo), b(ty, uy), ..., b(tji—1, uji_1),

W(so), W(s1). ... W(siy_1). 1 )

forj=1,2,...,i; — 1. The total number of (noisy) evaluations of a, b and W is equal to I = 3i; + i.
Any algorithm A using N(a, b, n, W), that computes approximation to X(T) is of the form

A@, b, n, W, 81,8,) = p(N(@, b, n, W)), )

for some Borel measurable mapping ¢ : R¥1+2+1 _ R, For a given n € N we denote by &, a class of all algorithms of
the form (2) for which the total number of evaluations [ is at most n.

Let 7 C F(y1, v2, q, K). (In this paper we use certain subclasses of F(y1, y», q, K) when establishing the lower bounds,
see (61) and (62).) For a fixed (a, b, n) € F the error of A € @, is defined in the following way

€A, a, b, n, W, Vi, 81,8,) = sup IX(T) — A(@, b, n, W, 81, 82)ll,-
(@,b)eVa(81)x V] (52)

fori =1, 2, where X(T) = X(a, b, n, W)(T). Hence, we are considering the worst error with respect to any (a, b) that can
be given to us for a fixed (a, b, ). The worst-case error of the algorithm A in the class F is defined as

eD(A, F,W, V', 81,8)= sup eP(A a,b,n W,V 8,6), (3)
(a,b,n)eF

see [3] and [14]. Finally, we define the nth minimal error as follows

eN(F WV 81.8) = inf eD(AF W V618 i=1.2.
€Pn

Our aim is to find possibly sharp bounds on the nth minimal error e%q)(]-‘, W, Vi 81,8,), ie, the lower and upper
bounds which match up to constants. We are also interested in defining an algorithm for which the infimum in
e(F, W, Vi, 81, 8,) is asymptotically attained.

Unless otherwise stated, all constants appearing in this paper (including those in the “O”, “£2”, and “®” notation)
will only depend on the parameters of the respective classes. Furthermore, the same symbol may be used for different
constants.

Remark 1. Let « : [0,T] — R be a y;-Holder continuous function, while let 8 : [0, T] — R a y,-Hdlder continuous
function. Moreover, let G, H : R — R be any C%(R) functions that satisfy the following conditions:

e G, G, H, H are globally Lipschitz continuous,
e H is bounded on R.

Then there exists K € (0, +00) such that a(t, y) = G(y - «(t)) belongs to A,l?, while b(t,y) = H(y - B(t)) belongs to B}f.
Remark 2. It is worth mentioning that the proposed computation and error setting includes the phenomenon of

lowering precision of computations. Namely, we can model relative roundoff errors by considering disturbing functions
pr. f € {a, b}, of the form

pf(t7y)=a(t7.)’)f(t’}/)7 (t,y)G[O,T]XR, (4)

for some function « that is Borel measurable and bounded on [0, T] x R. That is a frequent case for efficient computations
using both CPUs and GPUs. An example could be the current state-of-the-art GPU — NVIDIA Tesla V100, which
performance behaves as follows — 7 TeraFLOPS for double precision, 14 TeraFLOPS for single precision, and up to 112
TeraFLOPS for half precision of very specific type (repeatable operations of matrix multiplications and additions). We refer
to [11] where Monte Carlo simulations were performed on GPUs.

3. Randomized derivative-free Milstein algorithm for noisy information

Below we define randomized derivative-free Milstein algorithm in presence of informational noise for a and b. Let
n € N and let

tt=ih, h=T/n, i=0,1,...,n, (5)
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be the equidistant discretization on [0, T]. Moreover, we take
AW; = W(tiyq) — W(t),

t S -l
maw W)= [ [ awtaw) = 3 (wo - Wi - ¢ - v).
ti i
fort € [t;, tip1], i =0, 1,...,n— 1. Let {&§}, ! be independent random variables on the probability space (£2, ¥, P), such
that the o -fields o (&, 51, ... &n1) and 2 are independent, with &; being uniformly distributed on [t;, tiy1]. Then for
any (a, b, ) € F(y1, 72, 6, K), (8, b) € Va(81) x (V](82) U V2(5,)) we set
X ™Moy =n,
XMty = X0 ) +at X)) - I+ b X ™M) - aw; (6)
+ Lanb(ti, X M) - Ty gy, (W, w),
fori=0,1,...,n—1, where

df —RM 7 df —RM
bt RI(00) = B, KT (1) bt Xy~ (tx) + h) — b(es, X3 (6)).

h
The algorithm Adf ~RM s defined as
ATRM(G, b, n, W, 81,8,) = XT~™M(T). (7)
In case of exact information (i.e., §; = 8, = 0) we write de M and Adf M instead of de —RM , and Adf —RM , respectively.

—RM —df —RM

The total number of evaluations of a, b, and W used for computing An is 4n. Therefore, A,
combinatorial cost consists of O(n) arithmetic operations.
In the following theorem we state the upper bounds on the error of randomized derivative-free Milstein scheme under

noisy information about a and b.

€ Dyp. Moreover, the

Theorem 1.
(i) There exists a positive constant C, depending only on the parameters of the class F(y1, y2, q, K), such that for all n € N,
81,82 €10, 1], (a, b, n) € F(y1, y2, 4, K), (@, b) € Va(81) x V,(82), we have
IX(a, b, n, WXT) = AV (@, b, n, W, 81, 8)llg < C- (n*mi"{%”l’m +61+ sz).

(ii) There exist positive constants Cy, Gy, C3, depending only on the parameters of the class F(y1, y2, q, K) and q, such that
foralln eN, 81,68, €[0,1], (a, b, n) € F(y1, ¥2, q, K), (@, b) € Vo(81) x Vbz(éz), we have
IX(a. b, . WXT) — AY~R(@, b, n, W, 8., 8,)]lg < C; - n~mint3 )
Gy - el (83n1/2)1 (14 8,n"2). (81 +8,n'2 n—3/2)_

The aim of this section is to justify Theorem 1. Before we do that we need to prove several auxiliary results concerning,
in particular, the upper bounds on the error of the following time-continuous version of randomized derivative-free
Milstein algorithm An M in presence of noise. Namely, let us take

X o) =y,

XM = XM + as. XM ) - (- )
bt X (6) - (W) - w(n)
bt XM () - T (W, W),

(8)

fort € [tj, tizq] andi = 0,1, —11In the case of exact information we write de —kM {)?,ff_RM(t)}te[oﬂ instead
= df—RM =df—RM Sdf—RM Sdf —RM - -

of X; = {X; ( Veero,1y- It holds X (&) = X; (t;) fori = 0,1,...,n. Hence, it is sufficient to analyze the

error of de ~RM We also extend the filtration {Z:}t>0 in the same way as in [10]. Namely, let " = o(&, &1, ..., &n—1)

and E{' = U(Et u g”), t > 0. Since the o-fields X, and G" are independent, the process W is still a one-dimensional

Wiener process on (§2, X', P) with respect to {Et"}tzo- In the sequel we will consider stochastic It6 integrals with respect
to W of processes that are adapted to the filtration {X]'};~¢. In particular, the following technical lemma assures suitable

measurability of the process )_(,fffRM = {)_(,fffRM(t)}[E[o,T] with respect to {i}"}rzo-

Lemma 1. Letn € N, 81,8, € [0,1], (a,b, n) € F(y1, v2,q,K) and (a, E) € Vy(81) x (vg(sz) U Vbz(éz)). Then the process
XTRM — (XYM (t)}1cqo.1) is progressively measurable with respect to the filtration {£"};=o.
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The lemma above follows from induction and Proposition 1.13 in [13]. Hence, we skip its proof.

In order to justify Theorem 1 we proceed as follows. First, in Section 3.1 we investigate the error of the randomized
version of the classical Milstein algorithm when information about a and b is exact. Then, in Section 3.2 we show the
upper bounds for the derivative-free version of randomized Milstein scheme also for exact information about a and b.
Finally, combining the results obtained for these two methods we show the upper bounds on the error of X¥—*™ in the
presence of informational noise.

Remark 3. It is natural to ask about a version of Theorem 1 when corrupting functions p;, are from K, as it is for p,’s.
However, in this case we were unable to show any nontrivial upper bound for the algorithm Aﬁf ~RM It turns out that for
py € K! the function (t,y) — L14b(t, y) might be of super-linear growth with respect to y. Hence, we conjecture that
some modification of the scheme AY ™ is needed in order to obtain analogous bounds as in Theorem 1. We postpone
this problem to our future work.

Remark 4. In [11] the authors consider approximate stochastic Itd integration in the case when the values of the Wiener
process are corrupted by informational noise. Preliminary estimates suggest that direct application of the techniques used
in [11] to approximation of SDEs, under inexact information about W, is not possible. Therefore, further investigation in
that direction is needed.

3.1. Performance of randomized Milstein algorithm for exact information

By randomizing evaluations of drift coefficient a in the classical Milstein scheme, we arrive at the following randomized
Milstein algorithm. Take

XM©)  =n,
XM(tipr) = XM(6) + a(&, XR(6) - T + b(ti, XR(6:) - AW, )
+L1b(tis XEM(tl)) : I[,‘,tH_](Wa W)v
fori=0,1,...,n— 1. The algorithm .A’,fM is defined as
AM(a b, n, W, 0,0) = XM(T). (10)

Note that ARM ¢ @,, since it uses values of the partial derivative of b. We refer to A®™ as to an auxiliary method that
. ~df —RM
helps us to estimate the error of A, .
In order to investigate the error of the method A we define the following time-continuous version of the scheme
XRM as follows:

X0y =,
XM= XPM(6) + alé X)) - (¢ — 6) (1)
+ b(t;, XfM(6;)) - (W(t) — W(t;))
+L]b(tis X;quM(tl)) . I[i.t(Wv W),
for t € [t;, t;;1] and for i = 0,1,...,n — 1. We have that X?(t;) = X™(¢;) for all 0 < i < n. Hence, it is sufficient

to analyze the error of time-continuous version of the algorithm. Moreover, for the process {)?,’SM (t)}teqo,r) the following
version of Lemma 1 holds.

Lemma 2. Letn € N, (a,b,n) € F(y1, y2, q, K). Then the process XM — (XRM (£}, (0.1 is progressively measurable with
respect to the filtration {X[};o.

We have the following result for the algorithm ARM.

Proposition 1. There exists a positive constant C, depending only on the parameters of the class F(y1, 2, q, K), such that
foralln € Nand all (a, b, n) € F(y1, 2, q, K) we have

sup [X(t) — XBM(1), < Cn=minta+nra), (12)
te[0,T]

and, in particular,

IX(T) — A™(a, b, n, W, 0, 0)||g < Cn~™inlz 7172

Proof. We show the upper bound for sup,cq 7 IX(t) — )?r’f"”(t)nq, from which the desired result follows.
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The solution X can be expressed in the following way

X(t) =n+A(t) + B(t),

:/ Z $,X(8)) L1 ,1)(5)ds,
-/ 3 b(s. X)L, (S)AWCS).
0 =0

Let us denote by
U = (&, XBM()), Vi = (& X™M()).
Then, for the process {XX(t)};cj0.r] We can write

XfMty=n +F\’§M(t) +B™M(1),
-1
ARM / Z a(‘/i)']l[ti,ti+1)(s)dsv

tn N
B / )+ [ UMW) 101 (W),

Note that the process
n—1 s
(X (00 + [ Lbunaww)) ag,c.. )
2o G s€[0,T]
is adapted to {:‘TE’}te[o.n and has cadlag paths. Hence, the It6 integral above is well-defined.

We have that
3

EIA(t) — AM(0)" < C Y EIAM(D),

k=1

where
t n—1
w2 [ e X6 s XA B |
t n—1 q
AN =] [ D tals. X(00) -l X 101,005
i=0
t n—1
wAol =g 06 X000~ ) 5]
Since for all s € [0, T]
n—1
(Z |X tl tl)' ]l[f, IH_])(S))q = Z |X(tl) _Xr}fM(tl')|q'ﬂ[ti,ti+1)(s)a

i=0
we get, by using Lipschitz continuity of a and Hélder inequality, that

t n—1

EIARO < B( / S latei X(6) — a6, K61, (5)ds)
0 =0

t n—1

< 1<qTq71E/ (Z IX(6) — XM (6)] Ly ) (s))

t n—1
/ me t) — XR(e) 1y 1, (5)ds

For any (f, t) € {a, b} x [t;, tir1] the function
Roy— f(t,y)eR
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is in C?(R). Consider the process <f(t X(s ))) and apply the Itd formula (see, for example, Theorem 6.2, page 32

selti,tiy
in [15]) to the function (14), and to the solution process (X($))serty.ti,.11- This gives the following (parametric) version of

the It6 formula

F(E.X(s)) — F(E.X(6)) = / of, €, u)du + / BUF. £ wdW(u), (15)
where
_of O*f 5
lf ) = (6, X() - ot X()F 3 22 (6, X(u) - B, X(), (16)
y 2 dy
a
BUFLtou) = %(t,xw)) - b, X(w), (17)

forf € {a, b} and all t, s, u € [t;, ti+1]. In particular, for all s € [t;, ti+1] and by taking t = s or t = t; we obtain, respectively,
that

a(s, X(s)) — a(s, X(t;)) = /Sa(a, s,u)du + /S B(a, s, u)dW(u), (18)
bt X(s)) — b(ti, X(t)) = / (b, 6, u)du + / " Bb, 6, AW (w). (19)
By Lemma 4 we get that
lalf £ )] < C(1+ X)),
Bt )l < C(1+ IX(W))). (20)

and
|Ba, tr, u) — Ba, t, u)] < C(1+ X)) - |t; — &,
for f € {a, b}, t, t1, t5, u € [t;, tir1]. Then, we can write that
~ q o q o q
AR < c(RM© + B,

where

tn 1 q
|MRM(t )" = IE / / (a,s, u)du) Apgye,)(S) ds‘

t n-1 s
EIMRY () —E(/ fﬁ(a,s, u)dW(u)).]1[r,,,tim(s)ds’q.
G

Note that for almost all w € £2 the function
[ti, tiza] x [t;, tiga] 3 (s, u) = a(a, s, u)(w) € R

is continuous. Hence, parametric indefinite Riemann integral { f afa, s, u)du} has almost all trajectories contin-
selti,tiy1]
uous. Moreover, by (15) for all s € [t;, ti+1] it holds that o

/s B(a, s, u)dW(u) = a(s, X(s)) — a(s, X(t;)) — /S a(a, s, u)du.

Thus parametric indefinite stochastic It integral { fts B(a,s, u)dW(u)} also has continuous modification. Thereby,
1

. B selti,tiy1]
EM™(¢0)|" and E[M™ ()|’ are well defined.
We have that

[1+1

S
EIMRM ()" < 19~ 12/ (s —t;) / Ela(a, s, u)l"du)dss Cn.

G
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Moreover, for any t € [0, T] there exists | € {0, ..., n — 1} such that t € [t, t;+1] and

EIRY(0)" < CE| f Z (ﬂasu — B 5 AW (W) - g ()|

+CE‘/(;[Z</ B, b AW (W) - 1 ,(5)ds|
i=0 Yl

—i—CE‘/tl[( [lsﬂ(a,s,u)dW(u)> ds‘q. 1)

By using the Holder and Burkholder inequalities (see, for example, Theorem 2.2 in [12]), together with Lemma 8, we
obtain

[I<+1 q

‘/ (s, u) — Bla, ti,u))dW(u)‘ ~]1[[i,ti+1)(s)> ds

— T~ 11@2/
— T9-1 Z /IM IE‘ / (B(a, s, u) — B(a, t;, u))dW(U)‘q ds
i=0 b g
n—1

- tit1 S
Ty f (-2 E / Bla,s,u) = pa. . u)l'du) ds
t Gi

i=0 VM
n—1

liy1 s

=e3 [ (=0t [ ) (- v dn) o
i=0 Vi i

< %3+, o

and
IE‘/[’[< tls,B(a, s, u)dW(u)) ds‘q

T\9-1 ti41 s
— . _ \a@/2)-1 q
= C(n) /; ((s t) ]E/t; 1B(a, s, u)] du) ds

1

41 S
< Cn’q“f ((s—tl)WZH / (1 +]E|X(u)|")du> ds < Cn=392, (23)
f 7]
Let
tH»]
Y, = / /ﬂat,, AW (u ))ds i=01,....n—1,
and
k
Zk=ZYj k=0,1,....,n—1,
i=0

where Z_; := 0. Therefore,

t n—1 s q
IE’ / (] st waww) - nlti,w(s)ds‘ —E|Zi% 1€ {0.1,....n—1). (24)
0 = Vi
Notice that the process [fts B(a, t;, u)dW(u)} is adapted to the filtration {Xs}scr;.,,,,1 and has continuous paths.
! selti,tipq]

Hence, it is progressively measurable. This and Fubini theorem imply that Y; is X ,-measurable. Furthermore, let
Gi = Xy,,,i€{0,1,...,n—1}. Then {Gi}ic(o.1....n—1; is a filtration and Z; is G, measurable for eachk =0, 1,...,n—1. By
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using Fubini theorem for conditional expectation (see, for example, [16]) and martingale property of Itd integral we have

gk) ds =0,

tkt2 s
E(Zes1 — Z4/Gi) = / B [ pa ter, maww

L1 1
fork=0,1,...,n—2.This implies that {Z, Gk}ke(0,1,...n—1) is a discrete-time martingale. Therefore, by using the discrete
version of the Burkholder inequality we have for every k € {0, 1, ..., n — 1} that

k n—1
q/2
E|Z|Y < cgﬂz(E y,?) < > Y B,
i=0 i=0

Moreover, analogously as in (23) we get that
ElY;| <cn?? i=0,1,...,n— 1.
Therefore, forany k=0,1,...,n—1
E|Z|T < Cn7 1. (25)
Combining together (21), (22), (24) and (25), we have
EIMP()] < cp=amintz 1),
Therefore, for any t € [0, T]
EIAM(6)" < camaminGnen, (26)

We now bound from above sup, o 1 ]E|/~\§"’2'(t)|q. The estimation goes analogously as in [17], with some minor adjustments
needed in order to include the Holder regularity. For reader’s convenience we present a complete estimation procedure.
We denote by

i(t)=sup{i=0,1,...,n|iT/n < t},

T
¢(t) = i(f)a,

for t € [0, T]. Now we can write that

A0 < 277 (AT 0 + BARL0). (27)
with
- q O-1 repy q
B =B 3 [ (ats X(0) — atge X(e00) ] (28)
k=0 vk
T q
EIATL O =] f (ats. X(£(0) = aléio, X(c() ds| (29)
¢(t)
for all t € [0, T], where we take ]E|A§f‘§2(T)|q = 0. Moreover, let
N 1
o= [ (oo X(0) — o X)) ds. k=0 1,m= 1, (30)
tk

and

where we set 2,1 := 0. Note that
7 = K (14 sup [X(O)]) (T/ny+,
0<t<T
and conditioned on X, the random variables (f/k),'};é are zero mean, independent, and bounded by

K(l +SUPg<;<T |X(t)|)(T/n)V1+1. Therefore, by applying Theorem 4 from [18] and Lemma 8 we have for all ¢t € [0, T] that

~ q fod q =4
E|AR, ()] = E|Zje)-1] sE[E( max |Z| |Ew)]
0<j<n-1

IA

q
Cz(T/n)qm+1)~n‘”2-IE<1+ sup IX(t)I) < G i+, (31)
te[0,T]
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where C;, C3 > 0 depend only on the parameters of the class F(y1, 2, q, K) and g. Moreover, due to the fact that X,
and o (&, &1, ..., &—1) are independent o -fields, we get for all t € [0, T) that

t

B0 < (¢ — e / s X(E(6)) — s, XD s
G

t
< Gyt = g0 (1 + sup IEIX(t)|q> -IE/ Is — & ds,
¢

te[0,T] t)

and ]ElAn 22( )| = 0. Note that for t € [0,T) = U?;()][ti, tiv1) we have that ¢(t) < t < ¢(t) + h. In addition, for
t € [0,T) we have that & is uniformly distributed on [¢(t), ¢(t) + h]. Hence, |s — &) < hforallt € [0,T) and
s e [¢(t), t] C [¢(t), ¢(t)+ h), which gives for all t € [0, T)

t
E / s — £l ds < (t — £(t)) - K.
¢(t)

Therefore,
|A§Agz(t)|q < Csn_Q(]‘H’l)_ (32)
Using (27), (31) and (32) we obtain
EIAR (0] < Cgn=01+D), (33)
for all t € [0, T]. Combining (13), (26) and (33) we get
t n—1 ]
EIAt) — A1) < ¢ f meu, — XPME)| Ay, (5) ds 4 ConaminG 1) (34)

The analysis of the diffusion part is as follows. For all t € [0, T]

E|B(t) — BM (1) <CZIE|BRM :

=
where
EIBR(0)[' = | / mf,(b(s X(5) = blts X - g (AWCS)| (35)
B0 = f 5 (o X6~ b X0 - [ Lotvew) -t pawes) (36)
o =] [ t Z; (bt X(6)) = DU - i, (SJIW) (37)

By Burkholder inequality and Lemma 8 we have for every t € [0, T] that

EIBR ()" < c/ IEZ|b 5, X(5)) — b(ti, X($))|9 - Lyg 1y, )(5)ds
0

liy1

< CZ/ E(1+ [X(s)])? - (s — £)2ds < Cn~ 972,
and
t n—1
B (¢)] <c2/ ZE|X t) — XRe) T 1, (5)ds.

From (15) we get for s € [t;, t;+] that

b(t;, X(s)) — b(t;, X(t;)) — /S Lib(Up)dW (u) = /Sa(b, t;, u)du + fs<ﬁ(b, ti,u) — L1b(U,-))dW(u). (38)
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Hence, from (36), (38), and by Burkholder inequality we get

tn 1
BB ) <C1IE[ ‘/ (b, ti,u )du‘ Ay (S)ds

t n—1
ver [ 3
0 i=0

| (B0t = bty w1, (53,
G

where
el liy1 s
E/ Z‘/ a(b, ti, u )du‘ gy )(S ds<2/ (s — ;)1 1/ Ela(b, t;, u)|%duds
0 i—0 ti ti
fit1
<C- ( + sup E[X(t) |2q Z/ (s —t;)%ds < Cn7 9,
te[0,T]

tn 1
/ / (Bb. tw) — Lib(U) AW(W)| g ()

tn 1
< C.-n @2+ / /]Elﬂb t;, )—le(Ui)lqdu)-llm,[im(s)ds.

Note that
|B(b, ti, u) — Lib(U)| < K*(1+ IX(W)]) - [u — &7 + KIX(u) — X(6)] + KIX(&) — X2 (8;)]

and, therefore, for any s € [t;, ti;1] we have
N
/ E|B(b, t;, u) — Lib(Up)|9du < Cin~ 9271 4 Cn~ @271 4 Con 'BIX(6) — XM (1))
ti

From (39), (40), (41) and (43) we obtain that

t n—1

= q - —q(1 S q
EIBYS(t)" < Gin™9 + Gon Q<z+V2>+c3/ D EIX(6) = X 1yg.0,,(5)ds

Hence, for any t € [0, T] we have

t n—1

EIB(t) — BR(0)" < Kin™2 + K / D EIX () — X" - g0, (5)ds.

By (34) and (44) we get for all t € [0, T] that

t n—1
EIX(t) — X)) < ¢uramintztrin) 4 czf Y EIX(6) — X g, (S)ds.

which implies for all ¢t € [0, T] that
t
sup E[X(s) — XM(s)|" < cn-amintztrin) 4 CZ/ sup E[X(u) — X™(u)ds.
0<s<t 0 O<uss

Finally, by using Gronwall’s inequality we arrive at (12), which ends the proof. =

Remark 5. The idea of time-randomization applied in construction of the randomized Milstein algorithm AR

(42)

(43)

analogous to that used for Monte Carlo approximation of Lebesgue integrals of scalar functions (see, for example, [19]) and
similar to [17], where the authors analogously defined randomized Euler scheme. We also refer to [12], where a two-stage

randomized Milstein scheme was constructed and its error was investigated. In particular, if y, =

. o
sup [IX(t) — XRM(£)[|, < Cn~minzHr1 1)
te[0.7]

which recovers the result from [12].

mm{ + y1, 1} then
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Remark 6. We compare errors of classical Euler method AE, randomized Euler algorithm ARE classical Milstein scheme
A’,Y’ , and randomized Milstein algorithm ARM in the class F (yl, 2, q, K). Namely, in the case of exact information about
a and b, we have that

e AL, F(n1. 12, 4. K), W, V', 0,0) = O(n~ ™ty 1/2),
eV AR, F(y1, y2,4.K), W, V', 0,0) = O(n~™n{1/272)),
DAY, Fy1, y2.4.K), W, V', 0,0) = O(n~ ™72y,

VAN, F(y1, y2, 0. K), W, V', 0,0) = O(n~ minlz 712l (45)
Hence, if y € (0, 1/2] and y, € (0, 1] then AE and AM have the same error O(n~™™1.72}), Moreover, for y; € (0, 1] and
v2 € (0, 1/2] the methods ARE and ARM have the same error O(n ¥2), Finally, for y; € (1/2,1) and y; € (1/2, 1] the
randomized Milstein algorithm A outperforms AE, ARE, and AM
3.2. Performance of randomized derivative-free Milstein algorithm for exact information

df —RM

In this section we analyze the error of the algorithm Aj; in the case of exact information. Recall that its

time-continuous version is denoted by de —RM = {X,ff RM ()} teqo.11-
We now give proof of the following results.

Proposition 2. There exists a positive constant C, depending only on the parameters of the class F(y1, y2, q, K), such that
foralln € Nand all (a, b, n) € F(y1, 2, q, K) we have

sup [IX(t) — XIM(t)]l, < Cammintz vl (46)
tel0,T]

and, in particular,

IX(T) — AT (a, b, n, W, 0, 0)]|, < Cn~ ™"z +7172),

Proof. By (12) we have that

o o N o
sup [IX(t) — XI=RM(£)[|, < cn~minlzt72) 4 sup (IXEM () — XIRM (1), (47)
te[0,T] te[0,T]

Hence, we only need to estimate

sup. IXRM(£) — XERM ().
telo

Recall that

Ui = (6, XM(6)), Vi = (&, XM (6),
In addition, let us denote by

U = (6, X)), v = & X)),
We have that for all t € [0, T]

XR(e) =+ AT () + BY(),

t n—1
ao = | DV (5K

t n ]
Ndf*RM
B /
t n—1

IE|/j\lr§M( t)— Adf M < C1/ ZEIXRM X,ff_RM(t,-)lq-]l[[l..tm)(s)ds, (48)

)+ [ b U W) g OAWES)

1

Then

and

tn 1
~ q
BIB(0) — BY (0" <CE| / — DU g (WS

+ CE‘,/(; Z(/[S (le(U) £, hb( )) dw(u ))'ﬂ[fisfiﬂ)(s)dw(s) ‘1.
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Furthermore, by Burkholder inequality and Lemma 5

t n—1

t n—1
| [ o(bw) - b g awes) < c | DB 5O 1,5
0

i=0

E\/ | n ] / (Lib(U) = £04b(UTY) AW (@) 14,15 AWS)]

t“
<c/

t n—1

<G / ZED?,'SM(m—X,ff*"“”(r,-)|"-nm,q+1>(s)ds+czn*qu(l+ sup EIXZ(0)]").
: te[0,T]

1

gy / EILb(U;) — £1.4b(UY)] du) L ,)(5) ds
t

Therefore,

t n—1

= Sdf — q o Fdf— q
EIBR(t) — BY ™ (0)]" <Gy / D EIXRM(G) — X)) g, (5) ds

+ c2(1 + sup E|)~(,ff’RM(t)|q>n’3q/2.
te[0,T]

Hence, from (48) and (49) we get for all t € [0, T]

t n—1

S Sdf — Sdf — q
EIXfM(t) — X4/—RM( <c1/ ZIE|XRM — XTI 1, () ds

+ Cz(l + sup ]E|X,ff’RM(t)|q)n’3q/2.
te[0,T]

Hence, by Gronwall’s lemma we obtain

Elf('f"/'(t) —)?gf*RM(t”q < C(] + sup E|ng—RM(t)|Q)n,3q/2.
te[0,T]

Therefore, by (47), (50) and Lemma 7

0<t<T

This ends the proof. =

Having Proposition 2 we are ready to prove Theorem 1.

3.3. Proof of Theorem 1
We set
0F = (@ X5 ™), VY = (& XTI MG)).
The process {)_(,ff —Ru (t)}tero,17 can be decomposed as follows
XY = g+ AYR(c) 4 BY (),

where

(Vidf).n[[,.m)(s)ds,

Y
EY
5
<
=
I
S~
o

B = [ (0 + [ b0 W) 11, ()W)
0 t;

i=0 i

sup [IX(t) — XYMy, < ¢ (1 + sup ||)~<;jf*"’v'(t)||q)rr3/2 + Gy~ ™G4} < cpmmint3 vl
tel0,T

(51)
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Due to Lemma 1 the process

n—1

[Z<E(Uidf)+/ ot hb( )dW( )).ﬂ[t"’t"“)(s)}SE[O.T]

i=0

is adapted to {fjt’”}te[o;] and has cadlag paths. Hence, the It6 integral in (52) is well-defined.
From (46) we have that

= _ _ . l ~ _ = _
sup [IX(£) — XIRM(t)||g < cnm ™z T2l osup XYM () — XTRM(E)||,
tel0,T] tel0,T]

and we only need to estimate sup;.jo 1 ||)~(gf7RM(t) - )_(,fffRM(t)Hq. We have that

t n—1

E|AY—RM () — AF—RM(1))9 < C / medf Ry — XYM 1y, (s)ds
+c(1 + sup E|x;jf—RM(r)|q) ¥
0<t<T

and, by the Burkholder inequality,

E|BY ™M (1) — BY MM (1))9 < CIE’/ Z b(U f)) -ﬂ[rf,ti+1)(5)dW(S)‘q

+CE| /0 Z( /[ s (£1bU) = £04B(TT)) AWQ) g ,(5) W)

t n—1
<C[ ZE“’ df) f)|q'1[fi,fi+1)(s)ds

tn]

e [ 36— 0 BIEwbU) = £0sBO I 6165

Note that

EIbUT) — BT < CRIRI () — X)) + €3 (14 sup BIXS ™ (0)1)

0<t<T
and, by Lemma 6,
Bleuib(UY) - 2@ = €(1+ sup BRI (0" + sup BRI (e)7) -
0<t<T 0<t<T
+I<]E|de RM( ) de RM( )|q

Sdf— 8 if p, € K}
+C(1+ sup BIXTPI(0)7) - (1489 {2 Lip
OgtET o (o) -¢ 2) (811, if py € K2.

Therefore, we get that for all t € [0, T]

t n—1

BB (0) - B o < > B — RUBIa, (5)ds

+c(1+ sup EIXY~ RM(r)w)

0<t<T
+c(1 + sup EIXYRM()9 4 sup E|ng—RM(t)|q> R39/2

0<t<T 0<t<T

Zaf— (h'728,)0,  if py € K]
+c(1+ sup E[XY Mt q)- 1459 Lip
OSIET X ) - ¢ 2) (h=1728,)9, if py € K2

15

(53)

(54)

(57)
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From (54) and (57) we get

t n—1

EIXI M (6) — X4 ()0 < / ZElxdf RM(£) — XS (6)| 91 1,)(5) s

+c(1 + sup Ep:(gf—RM(t)w) (89 + 89)

0<t<T

+C(l + sup EXY™M(£)9 + sup ]El):(,‘,’f’RM(t)lq) - 392

0<t<T 0<t<T
- 1/25.yd
+c(1+ sup E|x,;’f*RM(t)|‘I) (1408 {1 iy € Ky (58)
0<t=T (h=1728,)9,  if py € K2

Thereby, the Gronwall’s lemma implies

sup XS (e) = X0l = G (1+ sup IXT,) - (61 +82)

O<t<T 0<t<T
+Go(1+ sup IXS(O)lg + sup XS ) - B2
0<t<T O=t=T
- h'/28, if py € K]
c (1 Far-Rm ) 148 s Lip 59
+G +ossltl£T” n ©Ollg) - (1+82) h=128,, if pp € K2. >

Combining (53), (59), and Lemma 7 we get the hypothesis. ®
4. Lower bounds and optimality of randomized derivative-free Milstein algorithm

This section is dedicated to establishing the lower bounds on the worst case error of an arbitrary algorithm from &,
and to prove that the randomized derivative-free Milstein algorithm X M s asymptotically optimal.

Lemma 3. Letq € [2, +00), y1, ¥» € (0, 1], K € (0, 400), then
eV F(y1, v2, 4. K), W, V', 81, 8,) = 2(max{n™ ™nl/2trnl 15, 5}, (60)

fori=1,2asn— 400, max{dy, 8} — O+.

Proof. The proof is similar to that presented in [10], however, for reader’s convenience we provide the details.
Let us consider the following subclasses of F(y1, y2, q, K):

G1(y1, v2. 4, K) = A' x {0} x {0}, (61)
G211, v2. 4. K) = {0} x B x {0}, (62)
where

Al ={ae A | a(t,y)=a(t,0) forall t € [0,T],y € R},

B2 = {b e B | b(t,y) = b(t,0) for all t € [0,T],y € R}. (63)
In the class g1(y1, ¥2, q, K) the approximation of X(T) is equivalent to the problem of approximating the Lebesgue
mtegral X(T fo a(t, 0)dt, while in G,(y1, ¥2, g, K) the problem reduces to approximation of scalar stochastic Ito integral
= [T b(t, 0)dW/(t
0

Smce {a} x {b} = Va(O) X Vé(O) C Vu(671) x V;((SZ) for any (a, b, n) € F(y1, ¥2, ¢, K) and i = 1, 2, we get, by considering
the subclasses (61), (62) of F(y1, 2, q, K), that

e(nq)(]:()’l, V2,4, I<)7 Ws Viv 513 82) = es’,q)(]:(yl, V2,4, I(), Ws Viv Oa 0)
> max{e?(Gi(y1, v2, 4, K), W, V', 0, 0), €2(Ga(y1, 2, 4, K), W, V', 0, 0)}. (64)

We now recall known results on the lower bounds in the case of exact information, i.e. §; = 8, = 0. For Lebesgue
integration of Holder continuous functions under randomized standard information the following lower bound follows
from [19]

eD(G(r1, 12,4, K), W, V',0,0) = 2(n~(/>H7), (65)
for i = 1, 2. Furthermore, in [17] and [20] the following lower bound was established for It6 integration

e(Ga(y1, v2, 4, K), W, V', 0,0) = 2(n72), (66)



P.M. Morkisz and P. Przybytowicz / Journal of Computational and Applied Mathematics 383 (2021) 113112 17

for i = 1, 2. (The lower bound (66) holds also in case when the evaluation points for W are chosen in an adaptive way,
see [20] for details.) By (64), (65), and (66) we arrive at

eD(F(y1. y2. 4. K), W, V1, 8y, 85) = 2(n~ mntinaal), (67)

Let us assume that &1, 8, € [0, min{K, 1}]. Since G1(y1. ¥2. 4. K), Ga(¥1. ¥2. 4. K) C F(y1. v2.4.K), Va(0) x Vj(8) C

Va(81) x V,(82), and V,(81) x Vi(0) C Va(81) x V,(82), we have that

e (F(y1, v2. 04, K), W, V', 81, 85)

> max{e(Gi(11. v2. 4. K), W, V', 81, 0), €2(Ga(y1, v2. 4, K), W, V', 0, 82)}, (68)
and we need to establish the lower bounds for e(G:(y1, y2, q, K), W, Vi, 81, 0), €(G2(y1, 12, . K), W, Vi, 0, 8,). To do
this we need the following auxiliary inequality, that is a direct consequence of the triangle inequality and the definition

of the worst-case error (3). Let G be a subclass of F(y4, ¥, q, K). Then for any algorithm A € &, and any (ay, by, 1),
(az, by, n) € G, such that

(Var(81) x V3,(82)) 1 (Vi (81) x Vi, (82)) #9, (69)
it holds
: 1
e (A4, G, W,V 8,8)> 7 IX (@, by, n)(T) = X(a, bz, nXD)llg, (70)

where i = 1,2. Since (81,0, 0), (~51,0,0) € Gi(y1, 72,4, K) and (0,0) € (Vs,(81) x (0}) N (Vos,(81) x (0}, we get by
(70) that

—

e (A, Gi(y1, v2, . K), W, V', 81,0) > 5 IX(81,0,0)(T) = X(=61, 0, 0XT)llg = T51. (71)

Moreover, (0, 8,, 0), (0, =85, 0) € Ga(y1, ¥2, ¢, K) and (0, 0) € ({0} X v;z(az)) n ({0} x v182(52)). Therefore, by (70)

. 1
€A, Gol(y1, v2,0,K), W, V', 0,82) = = [IX(0, 85, 0)(T) = X(0, =82, 0XT)llg = mqT "8, (72)
where my = ||Z|lq and Z is normally distributed random variable with mean zero and variance equal to 1. Hence, (68),
(71), and (72) imply
eV (F(n, v2, 4, K), W, V', 81, 8,) = 2(max{sy, 55}) (73)

for i = 1, 2. Finally, from (67) and (73) we get (60). O

The following theorem is the main result of the paper and establishes optimality of randomized derivative-free Milstein
algorithm.

Theorem 2. Let q € [2, +00), 1, ¥2 € (0, 1], K € (0, +00), then

e (F(y1, v2, 4. K), W, V1, 81, 8) = O(max{n~mnl1/2tr102d 5, 5,1,

as n — 400, max{éy, 82} — 0+. An algorithm of optimal order is the randomized derivative-free Milstein algorithm )_(,ff kM,

Sharp bounds for the class V? in the case when §, > 0 remain as an open problem.

5. Numerical experiments

We present numerical results for randomized derivative-free Milstein algorithm _,ff M for the following problem
{dX(t) = sin(M - X(t) - t71)dt + cos(M - X(t) - t72)dW(¢), t [0, T],

X(0) = 1.0, (74)

where M = 100, y; € (0, 1], y» = min{y; + 0.5, 1}. Drift and diffusion coefficients are Hélder continuous functions with
Holder exponents y; and y,, respectively (see Remark 1). The expected theoretical convergence rate for this problem,
according to Theorem 1, is n™*2 as n tends to 400, and §1, 8, tend to zero.

Note that the exact solution of (74) is not known. Hence, in the simulations we computed in parallel the approximation
of the solution for mesh of cardinality n and 1000n, treating the one on dense mesh as the exact. The rule of thumb for
such a choice is as follows. The projected convergence rate is at least n=%, so the error for 1000n should be at least an
order of magnitude lower than the error on n points, hence,

. - e
XTI Ty — XERM(TY |, & 1X(T) = XERM(T)]),.
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1.4 theoretical
- —e—exact
61=62=0.1
1 61=0.1, 62=0.05

——§1=562=n"-0.5

0.8
——061=0, 62=0.02
06 —=561=0, 62=0.01
S 04 -=—51=1, 62=0
<
E‘J 0.2
0
4.5
0.2 W
0.4
-0.6
-0.8
log(n)
Fig. 1. Error for exact/noisy information for the case y; = 0.2, y, = 0.7.
12 theoretical
—e—exact
! 61=62=0.1
0 81=0.1, 62=0.05
——01=62=n"-0.5
0.6 —=§1=0, §62=0.02
o4 —=581=0, §2=0.01
6 -=-51=1,62=0
Qo2
oo
o
v 0
4.5
-0.2 -
-0.4
-0.6
-0.8
log(n)
Fig. 2. Error for exact/noisy information for the case y; = 0.1, y, = 0.6.
The expectation is estimated as an average taken over K = 10% trajectories of the driving Wiener process. The

informational noise the coefficients a and b is simulated as follows. We assume that the corrupting functions p(t, y) for
drift and diffusion coefficients are bounded, i.e. |p4(t, y)| < &1 and |py(t, y)| < &>. The noising procedure was simulated as
a realization of a random variable uniformly distributed on [0, 1], scaled by the respective precision level §; or 8,. Each
corruption was generated independently. The obtained results are presented in Figs. 1 and 2. The plots present minus
logarithm of the approximation error based on the logarithm of number of discretization points, hence, the theoretical
error should form a line with the slope corresponding to the theoretical rate of convergence. For the obtained numerical
results, the empirical convergence rate was also computed (through the linear regression of the logn vs — log error curve,
where log denotes the logarithm with base 10), the summary of those can be find in Table 1.

The obtained numerical results confirm the theoretical results. The most surprising might be the fact that for a set
precision on diffusion coefficient and with increasing number of discretization points, the error grows. That indicates that
it is likely that the theoretical upper bound for error estimate for analyzed method is sharp with respect to the factor of
8,n'/2 in Theorem 1. This behavior is not observed for the set precision 8; on the drift coefficient and increasing number
of discretization points. The results also prove that with precision levels tending to zero with the theoretical convergence
rate of the method, the observed convergence rate behaves similarly as by the exact information.

Moreover, the obtained results clearly indicate that this method cannot be optimal, as we can simply omit part of the
information used, not letting the noise (coming from the corrupted diffusion coefficient) to increase the overall error of
the method. ( We can see from Figs. 1 and 2 that for a given precision level §, and for a larger number of evaluations used
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Table 1
Empirical convergence rates for various precision levels.
y1=0.1, », = 0.6 y1 =02, =07

Theoretical 0.6 0.7
Exact 0.54 0.55
81 =268 =0.1 —0.20 —-0.19
81 =0.1,8;, =0.05 0.01 0.00
8 =8=n"0% 0.48 0.48
81 =0,8, =0.02 0.25 0.23
81 =0,8, =0.01 0.33 0.31
81=1,6,=0 0.52 0.54

the error is higher than for the algorithm using fewer number of evaluations.) We believe that it is possible to propose an
adaptive procedure that chooses an optimal number of discretization points according to a given precision level. However,
we leave it as an open problem. Furthermore, in this paper we considered only noisy information about drift and diffusion
coefficients. In case when also the evaluations of the Wiener process are corrupted direct application of the technique
used in this paper is not possible. Hence, further extension of research on the subject is needed both for the lower and
the upper bounds on the error.
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Appendix
The proofs of the following two lemmas are straightforward and will be omitted.

Lemmad4. Iff € FI”, y € {y1, y2}, then for all (t,y) € [0,T] x R
IfF(e, )l < Ki(1+ [yl),

¥f
—(t, <K, j=1,2,
‘Byl( y)‘ =K, j

where Ky = K(1 + max{T”"1, T"2}).

Lemma5. ForallneN, b e B}?, andallt € [0,T], y,z € R it holds
IL1b(t, y)I < KK1(1 + |yl),
|£1,0b(t, ¥)| < KK;(1 + |y]),
IL1b(t,y) — L1.1b(t, 2)| < K|y — z| + KK1(1 + |z])h,
where h = T/n and K; = K(1 + max{T"1, T"2}).
In the following lemma we investigate behavior of difference operator £; in the case of inexact information about b.

Lemma 6. There exists a positive constant C, such that for all n € N, §1,6, € [0,1], (a,b) € A,’? X B,’f, (a, 13) €
Va(81) x (VA (82) UV2(82)), and all t € [0, T], y, z € R it holds

la(t, y)l < C(1 4 8:1)(1 + Iyl), (75)
IB(t, y)l < C(1+ &)1+ lyl), (76)
. 146, ifpp € K.,
bt )] < CO+ &)1+ ) |1 T TPeEks, (77)
1+86h7", ifpyek?,
|L1nb(t, ) — L14b(t, 2)] < C(1 + |y| + [zDh + K|y — 2|
82, if pp € K;

+C(1+1z])- (1+68,) - ip 78
(14121 - (14 8) {(Wl’ Fon e K (78)
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Proof. The proof of (75) and (76) is straightforward.
We have that
|C1ab(t, y) — L1nb(t, 2)] < |C1pb(E, y) — L1.4b(E, 2)| + |C1ab(t, 2) — L£1.4b(E, 2)]. (79)
From Lemma 5 we get that
[L1.b(t, y) — L1.nb(t, 2)| < |L1.nb(t, y) — L1b(t, 2)| + |L1b(t, z) — L1,nb(t, 2)|
<Kly —z| + K1K(1 + |yDh + K1K(1 + |z])h
<C(1+ |yl + |zDh+ K]y — z|. (80)
Furthermore,

|L1b(t, 2) — Lnb(t, 2)| < |b(t, Z)| - |Anb(t, 2) — ARb(t, Z)| + 85 - |ps(t, 2)| - | Anb(t, 2)]

< Ki(1+ |z]) - |Anb(t, 2) — Apb(t. 2)| + 82 - (1+ |2]) - | Apb(t, 2). (81)
Note that
|Anb(t, 2)| < |Anb(t, 2)| + 8 - | Anpo(t. 2)| < K + 85 - | Anp(t. 2)]. (82)
Moreover,

|Anb(t, z) — Apb(t, 2)| = 8 - | Anpy(t, )],

and
1, ifprICE-
A t,z)| < 1P 83
[ Anpy( )l_{zhl, if py € K2, (83)
Hence,
|C14b(t, 2) — L1.4b(E, 2)| < (Ky +83) - 82 - (1 + |z]) - | Anpw(t. 2)| + K - 82 - (1+ |z])
82, ifprIC1-
<CA+1z])-(1+68)- Lip 84
< C(1+Izl)- (14 8) {52.}1_17 e (84)

Combining (79), (80), and (84) we get (78). Finally, by (76), (82), (83), and
|L11b(¢, Y)| < C(1+82) - (14 IyD) - (K + [ Anpy(t, ¥)]) (85)
the result (77) follows. ®

Lemma 7.

(i) There exists a positive constant C, depending only on the parameters of the class F(y1, 2, q, K), such that for alln € N,
(a, b, n) € F(y1, v2. q. K), we have

sup EIX™(0)" < c, (86)
tel0,T]
sup EIXY™(r)? < C. (87)
tel0,T]

(i) There exists a positive constant C, depending only on the parameters of the class F(y1, y2, q, K), such that for alln € N,
81,82 € [0, 1], (a, b, n) € F(y1. y2. 4. K), (@, b) € V4(81) x V,}(8,), we have

=~ 2
sup EIXYRM(1)9 < C(1+ 87 + 89 + 8627) eTOHT 4334837, (88)
tel0,T]

(iii) There exists a positive constant C, depending only on_the parameters of the class F(y1, y2, q, K) and q, such that for all
neN, 8,8 €[0,1], (a,b,n) € Fly1, y2,q,K), (@, b) € Va(81) x VZ(82), we have

sup El):(gf—RM(t)lq <c( +8$+8§+(1 +83)53nq/2)ecr(1+5‘1’+5‘2’+(1+5‘2’)sgnq/z)' (89)
t€[0,T]

Proof. We only show (ii) and (iii), since the proof of (i) is analogous.
Take (a, b, n) € F(y1, y2,q,K), (G, b) € Va(81) x (Vb](82) U Vbz((Sz)). By Lemma 1 we have that the random variables

b(ti, XT M), £onb(ti, XT ™M (1)) are T P-measurable, while the increment W(t) — W(t;) is independent of X' for all
i=0,1,...,n—1and t € [t;, ti11]. Additionally, [W(t)—W(t;)llq = mq-(t —t;)"/2, and ||Z;, (W, W)]lq < %(mﬁq—i- 10t —t)
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for t € [t;, tir1], where mq is the gth root of the gth absolute moment of a normal variable with zero mean and variance
equal to 1. This and Lemma 6 give, foralli=0,1,...,n—1and t € [t;, ti+1], that
IXITR(e) — XTI < Nas, XS - (¢ — t)
+11BC, XTI - IWE) — Wt
+ I|£1,h5(ti,)?ﬁf’RM(ti))llq N Z, (W, W)llg
< C (1481 +8)- (148 - max{1, h~') - (1+ IXTR(6)llg) - (£ — )72, (90)

where C > 0 depends only on the parameters of the class F(y1, 2, q, K). Since ||de RM(O)||q = [Inllg < lInll2q < K, we
get by (90) and induction that

S max XYMl < 4oo. (91)
ie{0,1,...,n}

From (90) and (91) we get that sup;o 1 ||)_(,ff ( )l < +oc. Therefore, the function [0, T] > t — sup0<u<[]E|de RM(u)lq
€ R, U{0} is Borel measurable (as a nondecreasing functlon) and bounded. We now show that we can bound this mapping
from above by a finite number that depends only on the parameters of the class F(y1, 2, q, K), §1, and 8.

We have that for all t € [0, T]

=~ q ~ ~
EXT M) < CEln|® + EIAY RM()|9 4+ EIBY *M(1)|9).

From the Hoélder inequality we obtain that

- t n—1
EIAY™M(0)]? < Ci(1+87) + C(1 + 87) / 3 EIXT ()91, (5) .
0 i=0

Moreover, by Burkholder inequality

t n—1

EIBY(0)|Y < C3(1 4 83) + Ca(1 + 89) f wadf M )17 115, ,1)(5) ds

t n—1

Goh f LR UG (92)
where, by Lemma 6, we have
z = = i 1+48] if py € K|
Conb(OP)T < €y - (14 89)- (1 + |XL—RM(£))9) - ’ Lip 93
|£4,b(U)I" < Cr - (14 83) - (141X (6)I) 1460 b9, ifpy € K. (93)
Therefore, if p, € ICLllD we get

E[BYRM(£)]7 < C1(1 + 89) + (1 + 827)
t n—1

+C3(1+ 89 4 839 - / medf ()19 1,6, 1) (5) ds (94)
i=0

while for p, € K2 it holds that
EIBYM(O)¢ < C(1+89)- (1+5 - h9/2)

t n—1

+G(14+80) - (1+ 83 - h=9%) / ZIE|de ()19 0 g, ,4)(5) ds. (95)

By applying Gronwall’s lemma we get the thesis in (ii) and (iii). B
Finally, we recall the well-known bound on the absolute L*9-moment of the solution X of (1). The following lemma is
a direct consequence of Theorems 4.3 and 4.4 in Chapter 2 in [15].

Lemma 8. There exists a positive constant C, depending only on the parameters of the class F(y1, y2, q, K), such that for all
(a, b, n) € F(y1, y2, q, K), we have

sup |X(t |H <C.
tel[0,T] 2q
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