
Journal of Computational and Applied Mathematics 383 (2021) 113112

h
0

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Randomized derivative-freeMilstein algorithm for efficient
approximation of solutions of SDEs under noisy information
Paweł M. Morkisz a,b, Paweł Przybyłowicz a,∗

a AGH University of Science and Technology, Faculty of Applied Mathematics, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
b NVIDIA Poland

a r t i c l e i n f o

Article history:
Received 18 March 2020
Received in revised form 13 July 2020

MSC:
68Q25
65C30

Keywords:
SDEs
Standard noisy information
Pointwise approximation
Randomized Milstein algorithm
nth minimal error
Optimality

a b s t r a c t

We deal with pointwise approximation of solutions of scalar stochastic differential
equations in the presence of informational noise about underlying drift and diffusion
coefficients. We define a randomized derivative-free version of Milstein algorithm
Ādf−RM

n and investigate its error. We also study the lower bounds on the error of
arbitrary algorithm. It turns out that in some case the scheme Ādf−RM

n is the optimal
one. Finally, in order to test the algorithm Ādf−RM

n in practice, we report performed
numerical experiments.
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1. Introduction

In this paper we deal with pointwise approximation of solutions of the following scalar stochastic differential equations
(SDEs){

dX(t) = a(t, X(t)) dt + b(t, X(t)) dW (t), t ∈ [0, T ],

X(0) = η,
(1)

where T > 0, η is an initial-value, and W = {W (t)}t≥0 is a standard one-dimensional Wiener process on some probability
space (Ω,Σ,P). We will assume that only noisy evaluations of a and b are allowed. The aim is to find an efficient
approximation of X(T ) with an (asymptotic) error as small as possible.

The problem of approximation of solutions of SDEs under exact information about coefficients is well studied in
literature, see, for example, the standard reference [1]. Much less is known when values of drift and diffusion coefficients
are corrupted by some noise. Therefore, in this paper we assume that evaluations of the underlying coefficients are
permissible only at certain precision levels. Such a disturbance may be caused by, for example, measurement errors,
rounding errors, and lowering precision when performing computations on GPUs, see Remark 2 and [2,3] for further
discussions and examples.

In literature there are many results on numerical problems under noisy information, such as integrating or approxi-
mation of regular functions [3–5], Lp approximation of piecewise regular functions [6], solutions of IVPs [7] or PDEs [8,9].
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For stochastic case we refer to [10] and [11] where authors studied approximation of, respectively, SDEs under noisy
information by randomized Euler scheme and stochastic Itô integration in the case when also the values of the Wiener
process W were inexact.

In this paper we extend the results obtained in [10]. Namely, we study approximation of solutions of SDEs by a
randomized version of Milstein scheme under noisy information. For exact information such a version of the Milstein
scheme was investigated in [12]. Here, however, we use its derivative free version in order to cover also the case of
inexact information. Hence, our proof technique differs from that used in [12].

We use a suitable computation setting that allows us to model a situation when values of a’s and b’s are perturbed by
some deterministic noise, see [10]. Namely, let δ1, δ2 ∈ [0, 1] be the precision levels corresponding to drift and diffusion
coefficients, respectively. (The case of δ1 = δ2 = 0 corresponds to the exact information.) Available standard information
bout each coefficient consists of noisy evaluations of the coefficients at a finite number of points (ti, yi) ∈ [0, T ]×R. This
eans that, for example, for diffusion coefficient b and for a given point (ti, yi) ∈ [0, T ] × R evaluation returns b̃(ti, yi)
ith the property that |b(ti, yi) − b̃(ti, yi)| ≤ δ2(1+|yi|). Moreover, as in [10] for a = a(t, y) we allow randomized choices
f sample points with respect to the time variable t . For the Wiener process W we assume that the information is exact,
.e. it is given by the values of W at a finite number of points sk ∈ [0, T ]. (See, however, Remark 4.) The error of the
lgorithm, using the information above, is measured in the qth mean (q ≥ 1) maximized over the class of input data
a, b, η) and over all permissible information about (a, b, η) with the given precisions δ1, δ2 ≥ 0.

Theorem 2, which is the main result of the paper, states that the nth minimal error (under suitably regular informa-
ional noise) is asymptotically equal to Θ(n−min{

1
2 +γ1,γ2}

+ δ1 + δ2) where the factors in Θ do not depend on δ1, δ2. (Here,
γ1, γ2 ∈ (0, 1] are the Hölder exponents, with respect to time variable, of drift and diffusion coefficients, respectively.) A
randomized derivative-free version Ādf−RM

n of the classical Milstein algorithm is defined, which uses noisy evaluations of
drift and diffusion coefficients, and attains the desired rate of convergence. When the disturbances for a and b are more
rough, then error term for the scheme Ādf−RM

n also depends on δ2n1/2, see Theorem 1 (ii). This implies that in order to
obtain any convergence rate it is necessary to tend with both precision levels to zero suitably fast with respect to n.

The paper is organized as follows. Section 2 consists of the problem formulation, basic notions and definitions.
Randomized derivative-free Milstein algorithm Ādf−RM

n under perturbed information together with the upper bounds on
its error are presented in Section 3. In Section 4 we show the lower bound on the worst case error for an arbitrary
algorithm (Lemma 3). This leads to the conclusion that randomized Milstein algorithm Ādf−RM

n is optimal (Theorem 2).
Section 5 reports the numerical experiments performed for the algorithm Ādf−RM

n . Finally, the Appendix contains auxiliary
facts used in the paper.

2. Preliminaries

Let T > 0. We denote by N = {1, 2, . . .}. Let W = {W (t)}t≥0 be a standard one-dimensional Wiener process on a
complete probability space (Ω,Σ,P). We denote by {Σt}t≥0 a filtration, satisfying the usual conditions, such that W is
Wiener process on (Ω,Σ,P) with respect to {Σt}t≥0. Let Σ∞ = σ

(⋃
t≥0Σt

)
. For a random variable X : Ω → R we

rite ∥X∥q = (E|X |
q)1/q, where q ∈ [2,+∞). A continuous function f : [0, T ] × R → R belongs to C0,j([0, T ] × R), with

∈ N ∪ {0}, provided that for all k = 0, 1, . . . , j the partial derivatives ∂kf /∂yk exist and are continuous on [0, T ] × R.
For any f ∈ C0,1([0, T ] × R) by L1 we mean the following differential operator

L1f (t, y) = f (t, y) ·
∂ f
∂y

(t, y).

We will also use its derivative-free version. Namely, for f ∈ C([0, T ] × R) and h > 0 the difference operator L1,h is given
as follows

L1,hf (t, y) = f (t, y) ·∆hf (t, y),

where

∆hf (t, y) =
f (t, y + h) − f (t, y)

h
.

(Basic properties of L1 and L1,h, used in the paper, are gathered in the Appendix.)
Let K > 0 and γ ∈ (0, 1]. We say that f : [0, T ] × R → R belongs to the function class F γK iff for all t, s ∈ [0, T ] and

all y, z ∈ R it satisfies the following assumptions:

(i) f ∈ C0,2 ([0, T ] × R),
(ii) |f (0, 0)| ≤ K ,
(iii) |f (t, y) − f (t, z)| ≤ K |y − z|,
(iv) |f (t, y) − f (s, y)| ≤ K (1 + |y|)|t − s|γ ,

(v)
⏐⏐⏐ ∂ f (t, y) −

∂ f (t, z)
⏐⏐⏐ ≤ K |y − z|.
∂y ∂y
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n this paper we will be considering drift coefficients a from the following class

Aγ1
K =

{
f ∈ F γ1K

⏐⏐⏐ ⏐⏐⏐⏐∂ f∂y (t, y) −
∂ f
∂y

(s, y)
⏐⏐⏐⏐ ≤ K (1 + |y|)|t − s|γ1 for all t, s ∈ [0, T ], y ∈ R

}
,

while we will be assuming that diffusion coefficients are from

Bγ2K =

{
f ∈ F γ2K

⏐⏐⏐ |L1f (t, y) − L1f (t, z)| ≤ K |y − z| for all t ∈ [0, T ], y, z ∈ R
}
.

oreover, let

J q
K = {η : Ω → R | η is Σ0 − measurable,E|η|2q ≤ K }.

or γ1, γ2 ∈ (0, 1], q ∈ [2,+∞), K ∈ (0,+∞) we consider the following class of admissible input data

F(γ1, γ2, q, K ) = Aγ1
K × Bγ2K × J q

K .

or all (a, b, η) ∈ F(γ1, γ2, q, K ) Eq. (1) has a unique strong solution {X(t)}t∈[0,T ], that is adapted to {Σt}t∈[0,T ], see, for
xample, [13]. The numbers T , K , q, γ1, γ2 will be called parameters of the class F(γ1, γ2, q, K ). Except for T the parameters
re, in general, not known and the algorithms presented later on will not use them as input parameters.
Under some minor modifications, we recall from [10] a model of computation under inexact information about a’s and

’s. To do that we need to introduce the following auxiliary classes:

K1
= {p : [0, T ] × R → R | p − Borel measurable , |p(t, y)| ≤ 1 + |y|, t ∈ [0, T ], y ∈ R},

K1
Lip = {p ∈ K1

| |p(t, y) − p(t, z)| ≤ |y − z|, t ∈ [0, T ], y, z ∈ R},

nd

K2
= {p ∈ K1

| |p(t, y)| ≤ 1, t ∈ [0, T ], y ∈ R},

ee also [11]. The classes K1
Lip, K

2 are nonempty and contain constant functions. (This is an important fact from the point
f view of lower error bounds, see [10].) Let δ1, δ2 ∈ [0, 1]. We refer to δ1, δ2 as to precision parameters. For a ∈ Aγ1

K we
efine the following class of corrupted drift coefficients

Va(δ1) = {ã | ∃pa∈K1 : ã = a + δ1 · pa},

hile for b ∈ Bγ2K we consider the following two classes of corrupted diffusion coefficients

V 1
b (δ2) = {b̃ | ∃pb∈K1

Lip
: b̃ = b + δ2 · pb},

nd

V 2
b (δ2) = {b̃ | ∃pb∈K2 : b̃ = b + δ2 · pb}.

ote that we impose more smoothness for corrupting functions pb’s than for pa’s. This is due to some technicalities, see
emark 3. We have that {a} = Va(0) ⊂ Va(δ1) ⊂ Va(δ′

1) for 0 ≤ δ1 ≤ δ′

1 ≤ 1, and {b} = V i
b(0) ⊂ V i

b(δ2) ⊂ V i
b(δ

′

2) for
≤ δ2 ≤ δ′

2 ≤ 1, for i = 1, 2.
For (a, b, η) ∈ F(γ1, γ2, q, K ) let (ã, b̃) ∈ Va(δ1)× (V 1

b (δ2)∪V 2
b (δ2)). We assume that the approximation method is based

n discrete noisy information about (a, b) and exact information about W , and η. Hence, a vector of noisy information
as the following form

N (ã, b̃, η,W ) =

[
ã(ξ0, y0), ã(ξ1, y1), . . . , ã(ξi1−1, yi1−1),

b̃(t0, z0), b̃(t1, z1), . . . , b̃(ti1−1, zi1−1),

b̃(t0, u0), b̃(t1, u1), . . . , b̃(ti1−1, ui1−1),

W (s0),W (s1), . . . ,W (si2−1), η
]
,

here i1, i2 ∈ N and (ξ0, ξ1, . . . , ξi1−1) is a random vector on (Ω,Σ,P) which takes values in [0, T ]
i1 . We assume that

the σ -fields σ (ξ0, ξ1, . . . , ξi1−1) and Σ∞ are independent. Moreover, t0, t1, . . . , ti1−1 ∈ [0, T ] and s0, s1, . . . , si2−1 ∈ [0, T ]

are given time points. We assume that ti ̸= tj, si ̸= sj for all i ̸= j. The evaluation points yj, zj, uj for the spatial variables
y, z of a(·, y), b(·, z), and b(·, u) can be given in adaptive way with respect to (a, b, η) and W . This means that there exist
Borel measurable mappings ψ0 : Ri2 × R → R3, ψj : Rj

× Rj
× Rj

× Ri2 × R → R3, j = 1, 2, . . . , i1 − 1, such that the
successive points yj, zj are computed in the following way:

(y , z , u ) = ψ

(
W (s ),W (s ), . . . ,W (s ), η

)
,
0 0 0 0 0 1 i2−1
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where

(yj, zj, uj) = ψj

(
ã(ξ0, y0), ã(ξ1, y1), . . . , ã(ξj−1, yj−1),

b̃(t0, z0), b̃(t1, z1), . . . , b̃(tj−1, zj−1),

b̃(t0, u0), b̃(t1, u1), . . . , b̃(tj−1, uj−1),

W (s0),W (s1), . . . ,W (si2−1), η
)
,

for j = 1, 2, . . . , i1 − 1. The total number of (noisy) evaluations of a, b and W is equal to l = 3i1 + i2.
Any algorithm A using N (ã, b̃, η,W ), that computes approximation to X(T ) is of the form

A(ã, b̃, η,W , δ1, δ2) = ϕ(N (ã, b̃, η,W )), (2)

for some Borel measurable mapping ϕ : R3i1+i2+1
→ R. For a given n ∈ N we denote by Φn a class of all algorithms of

the form (2) for which the total number of evaluations l is at most n.
Let F ⊂ F(γ1, γ2, q, K ). (In this paper we use certain subclasses of F(γ1, γ2, q, K ) when establishing the lower bounds,

see (61) and (62).) For a fixed (a, b, η) ∈ F the error of A ∈ Φn is defined in the following way

e(q)(A, a, b, η,W , V i, δ1, δ2) = sup
(ã,b̃)∈Va(δ1)×V i

b(δ2)
∥X(T ) − A(ã, b̃, η,W , δ1, δ2)∥q.

for i = 1, 2, where X(T ) = X(a, b, η,W )(T ). Hence, we are considering the worst error with respect to any (ã, b̃) that can
be given to us for a fixed (a, b, η). The worst-case error of the algorithm A in the class F is defined as

e(q)(A,F,W , V i, δ1, δ2) = sup
(a,b,η)∈F

e(q)(A, a, b, η,W , V i, δ1, δ2), (3)

see [3] and [14]. Finally, we define the nth minimal error as follows

e(q)n (F,W , V i, δ1, δ2) = inf
A∈Φn

e(q)(A,F,W , V i, δ1, δ2), i = 1, 2.

Our aim is to find possibly sharp bounds on the nth minimal error e(q)n (F,W , V i, δ1, δ2), i.e., the lower and upper
bounds which match up to constants. We are also interested in defining an algorithm for which the infimum in
e(q)n (F,W , V i, δ1, δ2) is asymptotically attained.

Unless otherwise stated, all constants appearing in this paper (including those in the ‘‘O’’, ‘‘Ω ’’, and ‘‘Θ ’’ notation)
will only depend on the parameters of the respective classes. Furthermore, the same symbol may be used for different
constants.

Remark 1. Let α : [0, T ] → R be a γ1-Hölder continuous function, while let β : [0, T ] → R a γ2-Hölder continuous
function. Moreover, let G,H : R → R be any C2(R) functions that satisfy the following conditions:

• G,G′,H,H ′ are globally Lipschitz continuous,
• H is bounded on R.

Then there exists K ∈ (0,+∞) such that a(t, y) = G(y · α(t)) belongs to Aγ1
K , while b(t, y) = H(y · β(t)) belongs to Bγ2K .

Remark 2. It is worth mentioning that the proposed computation and error setting includes the phenomenon of
lowering precision of computations. Namely, we can model relative roundoff errors by considering disturbing functions
pf , f ∈ {a, b}, of the form

pf (t, y) = α(t, y) · f (t, y), (t, y) ∈ [0, T ] × R, (4)

for some function α that is Borel measurable and bounded on [0, T ]×R. That is a frequent case for efficient computations
using both CPUs and GPUs. An example could be the current state-of-the-art GPU — NVIDIA Tesla V100, which
performance behaves as follows — 7 TeraFLOPS for double precision, 14 TeraFLOPS for single precision, and up to 112
TeraFLOPS for half precision of very specific type (repeatable operations of matrix multiplications and additions). We refer
to [11] where Monte Carlo simulations were performed on GPUs.

3. Randomized derivative-free Milstein algorithm for noisy information

Below we define randomized derivative-free Milstein algorithm in presence of informational noise for a and b. Let
n ∈ N and let

t = ih, h = T/n, i = 0, 1, . . . , n, (5)
i



P.M. Morkisz and P. Przybyłowicz / Journal of Computational and Applied Mathematics 383 (2021) 113112 5

b
e the equidistant discretization on [0, T ]. Moreover, we take

∆Wi = W (ti+1) − W (ti),

Iti,t (W ,W ) =

∫ t

ti

∫ s

ti

dW (u)dW (s) =
1
2

(
(W (t) − W (ti))2 − (t − ti)

)
,

for t ∈ [ti, ti+1], i = 0, 1, . . . , n− 1. Let {ξi}
n−1
i=0 be independent random variables on the probability space (Ω,Σ,P), such

that the σ -fields σ (ξ0, ξ1, . . . , ξn−1) and Σ∞ are independent, with ξi being uniformly distributed on [ti, ti+1]. Then for
any (a, b, η) ∈ F(γ1, γ2, q, K ), (ã, b̃) ∈ Va(δ1) × (V 1

b (δ2) ∪ V 2
b (δ2)) we set⎧⎪⎨⎪⎩

X̄df−RM
n (0) = η,

X̄df−RM
n (ti+1) = X̄df−RM

n (ti) + ã(ξi, X̄
df−RM
n (ti)) ·

T
n + b̃(ti, X̄

df−RM
n (ti)) ·∆Wi

+L1,hb̃(ti, X̄
df−RM
n (ti)) · Iti,ti+1 (W ,W ),

(6)

for i = 0, 1, . . . , n − 1, where

L1,hb̃(ti, X̄df−RM
n (ti)) = b̃(ti, X̄df−RM

n (ti)) ·
b̃(ti, X̄

df−RM
n (ti) + h) − b̃(ti, X̄

df−RM
n (ti))

h
.

The algorithm Ādf−RM
n is defined as

Ādf−RM
n (ã, b̃, η,W , δ1, δ2) := X̄df−RM

n (T ). (7)

In case of exact information (i.e., δ1 = δ2 = 0) we write Xdf−RM
n and Adf−RM

n instead of X̄df−RM
n , and Ādf−RM

n , respectively.
The total number of evaluations of a, b, and W used for computing Ādf−RM

n is 4n. Therefore, Ādf−RM
n ∈ Φ4n. Moreover, the

combinatorial cost consists of O(n) arithmetic operations.
In the following theorem we state the upper bounds on the error of randomized derivative-free Milstein scheme under

noisy information about a and b.

Theorem 1.

(i) There exists a positive constant C, depending only on the parameters of the class F(γ1, γ2, q, K ), such that for all n ∈ N,
δ1, δ2 ∈ [0, 1], (a, b, η) ∈ F(γ1, γ2, q, K ), (ã, b̃) ∈ Va(δ1) × V 1

b (δ2), we have

∥X(a, b, η,W )(T ) − Ādf−RM
n (ã, b̃, η,W , δ1, δ2)∥q ≤ C ·

(
n−min{

1
2 +γ1,γ2}

+ δ1 + δ2

)
.

(ii) There exist positive constants C1, C2, C3, depending only on the parameters of the class F(γ1, γ2, q, K ) and q, such that
for all n ∈ N, δ1, δ2 ∈ [0, 1], (a, b, η) ∈ F(γ1, γ2, q, K ), (ã, b̃) ∈ Va(δ1) × V 2

b (δ2), we have

∥X(a, b, η,W )(T ) − Ādf−RM
n (ã, b̃, η,W , δ1, δ2)∥q ≤ C1 · n−min{

1
2 +γ1,γ2}

+ C2 · eC3(δ2n
1/2)q

· (1 + δ2n1/2) ·

(
δ1 + δ2n1/2

+ n−3/2
)
.

The aim of this section is to justify Theorem 1. Before we do that we need to prove several auxiliary results concerning,
in particular, the upper bounds on the error of the following time-continuous version of randomized derivative-free
Milstein algorithm Ādf−RM

n in presence of noise. Namely, let us take⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
˜̄Xdf−RM
n (0) = η,

˜̄Xdf−RM
n (t) =

˜̄Xdf−RM
n (ti) + ã(ξi, ˜̄Xdf−RM

n (ti)) · (t − ti)

+b̃(ti, ˜̄Xdf−RM
n (ti)) · (W (t) − W (ti))

+L1,hb̃(ti, ˜̄Xdf−RM
n (ti)) · Iti,t (W ,W ),

(8)

for t ∈ [ti, ti+1] and i = 0, 1, . . . , n − 1. In the case of exact information we write X̃df−RM
n = {X̃df−RM

n (t)}t∈[0,T ] instead
of ˜̄Xdf−RM

n = {
˜̄Xdf−RM
n (t)}t∈[0,T ]. It holds ˜̄Xdf−RM

n (ti) = X̄df−RM
n (ti) for i = 0, 1, . . . , n. Hence, it is sufficient to analyze the

error of ˜̄Xdf−RM
n . We also extend the filtration {Σt}t≥0 in the same way as in [10]. Namely, let Gn

= σ (ξ0, ξ1, . . . , ξn−1)
and Σ̃n

t = σ

(
Σt ∪ Gn

)
, t ≥ 0. Since the σ -fields Σ∞ and Gn are independent, the process W is still a one-dimensional

Wiener process on (Ω,Σ,P) with respect to {Σ̃n
t }t≥0. In the sequel we will consider stochastic Itô integrals with respect

to W of processes that are adapted to the filtration {Σ̃n
t }t≥0. In particular, the following technical lemma assures suitable

measurability of the process ˜̄Xdf−RM
n = {

˜̄Xdf−RM
n (t)}t∈[0,T ] with respect to {Σ̃n

t }t≥0.

Lemma 1. Let n ∈ N, δ1, δ2 ∈ [0, 1], (a, b, η) ∈ F(γ1, γ2, q, K ) and (ã, b̃) ∈ Va(δ1) × (V 1
b (δ2) ∪ V 2

b (δ2)). Then the process
˜̄Xdf−RM

= {
˜̄Xdf−RM (t)} is progressively measurable with respect to the filtration {Σ̃n

} .
n n t∈[0,T ] t t≥0
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The lemma above follows from induction and Proposition 1.13 in [13]. Hence, we skip its proof.
In order to justify Theorem 1 we proceed as follows. First, in Section 3.1 we investigate the error of the randomized

version of the classical Milstein algorithm when information about a and b is exact. Then, in Section 3.2 we show the
upper bounds for the derivative-free version of randomized Milstein scheme also for exact information about a and b.
Finally, combining the results obtained for these two methods we show the upper bounds on the error of X̄df−RM in the
presence of informational noise.

Remark 3. It is natural to ask about a version of Theorem 1 when corrupting functions pb are from K1, as it is for pa’s.
However, in this case we were unable to show any nontrivial upper bound for the algorithm Ādf−RM

n . It turns out that for
pb ∈ K1 the function (t, y) → L1,hb̃(t, y) might be of super-linear growth with respect to y. Hence, we conjecture that
some modification of the scheme Ādf−RM

n is needed in order to obtain analogous bounds as in Theorem 1. We postpone
this problem to our future work.

Remark 4. In [11] the authors consider approximate stochastic Itô integration in the case when the values of the Wiener
process are corrupted by informational noise. Preliminary estimates suggest that direct application of the techniques used
in [11] to approximation of SDEs, under inexact information about W , is not possible. Therefore, further investigation in
that direction is needed.

3.1. Performance of randomized Milstein algorithm for exact information

By randomizing evaluations of drift coefficient a in the classical Milstein scheme, we arrive at the following randomized
Milstein algorithm. Take⎧⎪⎨⎪⎩

XRM
n (0) = η,

XRM
n (ti+1) = XRM

n (ti) + a(ξi, XRM
n (ti)) ·

T
n + b(ti, XRM

n (ti)) ·∆Wi

+ L1b(ti, XRM
n (ti)) · Iti,ti+1 (W ,W ),

(9)

for i = 0, 1, . . . , n − 1. The algorithm ARM
n is defined as

ARM
n (a, b, η,W , 0, 0) := XRM

n (T ). (10)

Note that ARM
n /∈ Φn, since it uses values of the partial derivative of b. We refer to ARM

n as to an auxiliary method that
helps us to estimate the error of Ādf−RM

n .
In order to investigate the error of the method ARM

n we define the following time-continuous version of the scheme
XRM
n as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

X̃RM
n (0) = η,

X̃RM
n (t) = X̃RM

n (ti) + a(ξi, X̃RM
n (ti)) · (t − ti)

+ b(ti, X̃RM
n (ti)) · (W (t) − W (ti))

+ L1b(ti, X̃RM
n (ti)) · Iti,t (W ,W ),

(11)

for t ∈ [ti, ti+1] and for i = 0, 1, . . . , n − 1. We have that X̃RM
n (ti) = XRM

n (ti) for all 0 ≤ i ≤ n. Hence, it is sufficient
to analyze the error of time-continuous version of the algorithm. Moreover, for the process {X̃RM

n (t)}t∈[0,T ] the following
version of Lemma 1 holds.

Lemma 2. Let n ∈ N, (a, b, η) ∈ F(γ1, γ2, q, K ). Then the process X̃RM
n = {X̃RM

n (t)}t∈[0,T ] is progressively measurable with
respect to the filtration {Σ̃n

t }t≥0.

We have the following result for the algorithm ARM
n .

Proposition 1. There exists a positive constant C, depending only on the parameters of the class F(γ1, γ2, q, K ), such that
for all n ∈ N and all (a, b, η) ∈ F(γ1, γ2, q, K ) we have

sup
t∈[0,T ]

∥X(t) − X̃RM
n (t)∥q ≤ Cn−min{

1
2 +γ1,γ2}, (12)

and, in particular,

∥X(T ) − ARM
n (a, b, η,W , 0, 0)∥q ≤ Cn−min{

1
2 +γ1,γ2}.

Proof. We show the upper bound for sup ∥X(t) − X̃RM (t)∥ , from which the desired result follows.
t∈[0,T ] n q
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The solution X can be expressed in the following way

X(t) = η + A(t) + B(t),

A(t) =

∫ t

0

n−1∑
i=0

a(s, X(s))·1[ti,ti+1)(s)ds,

B(t) =

∫ t

0

n−1∑
i=0

b(s, X(s))·1[ti,ti+1)(s)dW (s).

Let us denote by

Ui = (ti, X̃RM
n (ti)), Vi = (ξi, X̃RM

n (ti)).

Then, for the process {X̃RM
n (t)}t∈[0,T ] we can write

X̃RM
n (t) = η + ÃRM

n (t) + B̃RM
n (t),

ÃRM
n (t) =

∫ t

0

n−1∑
i=0

a(Vi)·1[ti,ti+1)(s)ds,

B̃RM
n (t) =

∫ t

0

n−1∑
i=0

(
b(Ui) +

∫ s

ti

L1b(Ui)dW (u)
)
·1[ti,ti+1)(s)dW (s).

Note that the process{n−1∑
i=0

(
b(Ui) +

∫ s

ti

L1b(Ui)dW (u)
)
·1[ti,ti+1)(s)

}
s∈[0,T ]

is adapted to {Σ̃n
t }t∈[0,T ] and has cádlág paths. Hence, the Itô integral above is well-defined.

We have that

E|A(t) − ÃRM
n (t)|

q
≤ C

3∑
k=1

E|ÃRM
n,k (t)|

q
,

where

E|ÃRM
n,1(t)|

q
= E

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(a(s, X(s)) − a(s, X(ti)))·1[ti,ti+1)(s)ds
⏐⏐⏐q,

E|ÃRM
n,2(t)|

q
= E

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(a(s, X(ti)) − a(ξi, X(ti)))·1[ti,ti+1)(s)ds
⏐⏐⏐q,

E|ÃRM
n,3(t)|

q
= E

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(a(ξi, X(ti)) − a(Vi))·1[ti,ti+1)(s)ds
⏐⏐⏐q.

Since for all s ∈ [0, T ](n−1∑
i=0

|X(ti) − X̃RM
n (ti)|·1[ti,ti+1)(s)

)q
=

n−1∑
i=0

|X(ti) − X̃RM
n (ti)|

q
·1[ti,ti+1)(s),

we get, by using Lipschitz continuity of a and Hölder inequality, that

E|ÃRM
n,3(t)|

q
≤ E

(∫ t

0

n−1∑
i=0

|a(ξi, X(ti)) − a(ξi, X̃RM
n (ti))|·1[ti,ti+1)(s)ds

)q
≤ K qT q−1E

∫ t

0

(n−1∑
i=0

|X(ti) − X̃RM
n (ti)|·1[ti,ti+1)(s)

)q
ds

= C
∫ t

0

n−1∑
i=0

E|X(ti) − X̃RM
n (ti)|

q
·1[ti,ti+1)(s)ds. (13)

For any (f , t) ∈ {a, b} × [ti, ti+1] the function
R ∋ y → f (t, y) ∈ R (14)



8 P.M. Morkisz and P. Przybyłowicz / Journal of Computational and Applied Mathematics 383 (2021) 113112

w

t

a

f

w

N

u

T

E

is in C2(R). Consider the process
(
f (t, X(s))

)
s∈[ti,ti+1]

and apply the Itô formula (see, for example, Theorem 6.2, page 32

in [15]) to the function (14), and to the solution process (X(s))s∈[ti,ti+1]. This gives the following (parametric) version of
the Itô formula

f (t, X(s)) − f (t, X(ti)) =

∫ s

ti

α(f , t, u)du +

∫ s

ti

β(f , t, u)dW (u), (15)

here

α(f , t, u) =
∂ f
∂y

(t, X(u)) · a(u, X(u)) +
1
2
∂2f
∂y2

(t, X(u)) · b2(u, X(u)), (16)

β(f , t, u) =
∂ f
∂y

(t, X(u)) · b(u, X(u)), (17)

for f ∈ {a, b} and all t, s, u ∈ [ti, ti+1]. In particular, for all s ∈ [ti, ti+1] and by taking t = s or t = ti we obtain, respectively,
hat

a(s, X(s)) − a(s, X(ti)) =

∫ s

ti

α(a, s, u)du +

∫ s

ti

β(a, s, u)dW (u), (18)

b(ti, X(s)) − b(ti, X(ti)) =

∫ s

ti

α(b, ti, u)du +

∫ s

ti

β(b, ti, u)dW (u). (19)

By Lemma 4 we get that

|α(f , t, u)| ≤ C(1 + |X(u)|2),

|β(f , t, u)| ≤ C(1 + |X(u)|), (20)

nd

|β(a, t1, u) − β(a, t2, u)| ≤ C(1 + |X(u)|2) · |t1 − t2|γ1 ,

or f ∈ {a, b}, t, t1, t2, u ∈ [ti, ti+1]. Then, we can write that

E|ÃRM
n,1(t)|

q
≤ C

(
E|M̃RM

n,1 (t)|
q
+ E|M̃RM

n,2 (t)|
q
)
,

here

E|M̃RM
n,1 (t)|

q
= E

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(∫ s

ti

α(a, s, u)du
)

· 1[ti,ti+1)(s) ds
⏐⏐⏐q

E|M̃RM
n,2 (t)|

q
= E

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(∫ s

ti

β(a, s, u)dW (u)
)

· 1[ti,ti+1)(s)ds
⏐⏐⏐q.

ote that for almost all ω ∈ Ω the function

[ti, ti+1] × [ti, ti+1] ∋ (s, u) → α(a, s, u)(ω) ∈ R

is continuous. Hence, parametric indefinite Riemann integral
{∫ s

ti
α(a, s, u) du

}
s∈[ti,ti+1]

has almost all trajectories contin-

ous. Moreover, by (15) for all s ∈ [ti, ti+1] it holds that∫ s

ti

β(a, s, u)dW (u) = a(s, X(s)) − a(s, X(ti)) −

∫ s

ti

α(a, s, u) du.

hus parametric indefinite stochastic Itô integral
{∫ s

ti
β(a, s, u)dW (u)

}
s∈[ti,ti+1]

also has continuous modification. Thereby,

|M̃RM
n,1 (t)|

q
and E|M̃RM

n,2 (t)|
q
are well defined.

We have that

E|M̃RM
n,1 (t)|

q
≤ T q−1

n−1∑
i=0

∫ ti+1

ti

(
(s − ti)q−1

·

∫ s

ti

E|α(a, s, u)|qdu
)
ds ≤ Cn−q.
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oreover, for any t ∈ [0, T ] there exists l ∈ {0, . . . , n − 1} such that t ∈ [tl, tl+1] and

E|M̃RM
n,2 (t)|

q
≤ CE

⏐⏐⏐ ∫ tl

0

n−1∑
i=0

(∫ s

ti

(β(a, s, u) − β(a, ti, u))dW (u)
)

· 1[ti,ti+1)(s) ds
⏐⏐⏐q

+CE
⏐⏐⏐ ∫ tl

0

n−1∑
i=0

(∫ s

ti

β(a, ti, u)dW (u)
)

· 1[ti,ti+1)(s) ds
⏐⏐⏐q

+CE
⏐⏐⏐ ∫ t

tl

(∫ s

tl

β(a, s, u)dW (u)
)
ds
⏐⏐⏐q. (21)

y using the Hölder and Burkholder inequalities (see, for example, Theorem 2.2 in [12]), together with Lemma 8, we
btain

E
⏐⏐⏐ ∫ tl

0

n−1∑
i=0

(∫ s

ti

(β(a, s, u) − β(a, ti, u))dW (u)
)

· 1[ti,ti+1)(s) ds
⏐⏐⏐q

≤ T q−1E
∫ T

0

(n−1∑
i=0

⏐⏐⏐ ∫ s

ti

(β(a, s, u) − β(a, ti, u))dW (u)
⏐⏐⏐ · 1[ti,ti+1)(s)

)q
ds

= T q−1E
n−1∑
k=0

∫ tk+1

tk

(n−1∑
i=0

⏐⏐⏐ ∫ s

ti

(β(a, s, u) − β(a, ti, u))dW (u)
⏐⏐⏐ · 1[ti,ti+1)(s)

)q
ds

= T q−1
n−1∑
i=0

∫ ti+1

ti

E
⏐⏐⏐ ∫ s

ti

(β(a, s, u) − β(a, ti, u))dW (u)
⏐⏐⏐q ds

≤ T q−1cq
n−1∑
i=0

∫ ti+1

ti

(
(s − ti)(q/2)−1

· E
∫ s

ti

|β(a, s, u) − β(a, ti, u)|qdu
)
ds

≤ C
n−1∑
i=0

∫ ti+1

ti

(
(s − ti)(q/2)−1

·

∫ s

ti

(1 + E|X(u)|2q) · (s − ti)qγ1 du
)
ds

≤ Cn−q( 12 +γ1), (22)

and

E
⏐⏐⏐ ∫ t

tl

(∫ s

tl

β(a, s, u)dW (u)
)
ds
⏐⏐⏐q

≤ C
(T
n

)q−1
·

∫ tl+1

tl

(
(s − tl)(q/2)−1

· E
∫ s

tl

|β(a, s, u)|q du
)
ds

≤ Cn−q+1
∫ tl+1

tl

(
(s − tl)(q/2)−1

·

∫ s

tl

(1 + E|X(u)|q) du
)
ds ≤ Cn−3q/2. (23)

Let

Yi =

∫ ti+1

ti

(∫ s

ti

β(a, ti, u)dW (u)
)
ds i = 0, 1, . . . , n − 1,

and

Zk =

k∑
i=0

Yi k = 0, 1, . . . , n − 1,

where Z−1 := 0. Therefore,

E
⏐⏐⏐ ∫ tl

0

n−1∑
i=0

(∫ s

ti

β(a, ti, u)dW (u)
)

· 1[ti,ti+1)(s) ds
⏐⏐⏐q = E|Zl−1|

q, l ∈ {0, 1, . . . , n − 1}. (24)

Notice that the process
{∫ s

ti
β(a, ti, u)dW (u)

}
s∈[ti,ti+1]

is adapted to the filtration {Σs}s∈[ti,ti+1] and has continuous paths.

Hence, it is progressively measurable. This and Fubini theorem imply that Yi is Σti+1-measurable. Furthermore, let
G := Σ , i ∈ {0, 1, . . . , n−1}. Then {G } is a filtration and Z is G measurable for each k = 0, 1, . . . , n−1. By
i ti+1 i i∈{0,1,...,n−1} k k
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T

using Fubini theorem for conditional expectation (see, for example, [16]) and martingale property of Itô integral we have

E(Zk+1 − Zk|Gk) =

∫ tk+2

tk+1

E

(∫ s

tk+1

β(a, tk+1, u)dW (u)
⏐⏐⏐⏐Gk

)
ds = 0,

for k = 0, 1, . . . , n−2. This implies that {Zk, Gk}k∈{0,1,...,n−1} is a discrete-time martingale. Therefore, by using the discrete
version of the Burkholder inequality we have for every k ∈ {0, 1, . . . , n − 1} that

E|Zk|q ≤ Cq
qE
( k∑

i=0

Y 2
i

)q/2
≤ Cq

qn
q/2−1

n−1∑
i=0

E|Yi|
q.

Moreover, analogously as in (23) we get that

E|Yi|
q
≤ Cn−3q/2, i = 0, 1, . . . , n − 1.

Therefore, for any k = 0, 1, . . . , n − 1

E|Zk|q ≤ Cn−q. (25)

Combining together (21), (22), (24) and (25), we have

E|M̃RM
n,2 (t)| ≤ Cn−qmin{

1
2 +γ1,1}.

herefore, for any t ∈ [0, T ]

E|ÃRM
n,1(t)|

q
≤ Cn−qmin{

1
2 +γ1,1}. (26)

We now bound from above supt∈[0,T ] E|ÃRM
n,2(t)|

q
. The estimation goes analogously as in [17], with some minor adjustments

needed in order to include the Hölder regularity. For reader’s convenience we present a complete estimation procedure.
We denote by

i(t) = sup{i = 0, 1, . . . , n | iT/n ≤ t},

ζ (t) = i(t)
T
n
,

for t ∈ [0, T ]. Now we can write that

E|ÃRM
n,2(t)|

q
≤ 2q−1

(
E|ÃRM

n,21(t)|
q
+ E|ÃRM

n,22(t)|
q
)
, (27)

with

E|ÃRM
n,21(t)|

q
= E

⏐⏐⏐ i(t)−1∑
k=0

∫ tk+1

tk

(
a(s, X(tk)) − a(ξk, X(tk))

)
ds
⏐⏐⏐q, (28)

E|ÃRM
n,22(t)|

q
= E

⏐⏐⏐ ∫ t

ζ (t)

(
a(s, X(ζ (t))) − a(ξi(t), X(ζ (t)))

)
ds
⏐⏐⏐q, (29)

for all t ∈ [0, T ], where we take E|ÃRM
n,22(T )|

q
= 0. Moreover, let

Ỹk =

∫ tk+1

tk

(
a(s, X(tk)) − a(ξk, X(tk))

)
ds, k = 0, 1, . . . , n − 1, (30)

and

Z̃j =

j∑
k=0

Ỹk, j = 0, 1, . . . , n − 1,

where we set Z̃−1 := 0. Note that

|Ỹk| ≤ K
(
1 + sup

0≤t≤T
|X(t)|

)
(T/n)γ1+1,

and conditioned on Σ∞ the random variables (Ỹk)n−1
k=0 are zero mean, independent, and bounded by

K
(
1+ sup0≤t≤T |X(t)|

)
(T/n)γ1+1. Therefore, by applying Theorem 4 from [18] and Lemma 8 we have for all t ∈ [0, T ] that

E|ÃRM
n,21(t)|

q
= E|Z̃i(t)−1|

q
≤ E

[
E

(
max

0≤j≤n−1
|Z̃j|

q
| Σ∞

)]
≤ C2(T/n)q(γ1+1)

· nq/2
· E
(
1 + sup |X(t)|

)q
≤ C3n−q(γ1+

1
2 ), (31)
t∈[0,T ]
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where C2, C3 > 0 depend only on the parameters of the class F(γ1, γ2, q, K ) and q. Moreover, due to the fact that Σ∞

nd σ (ξ0, ξ1, . . . , ξn−1) are independent σ -fields, we get for all t ∈ [0, T ) that

E|ÃRM
n,22(t)|

q
≤ (t − ζ (t))q−1

·

∫ t

ζ (t)
E|a(s, X(ζ (t))) − a(ξi(t), X(ζ (t)))|q ds

≤ C4(t − ζ (t))q−1
·

(
1 + sup

t∈[0,T ]

E|X(t)|q
)

· E
∫ t

ζ (t)
|s − ξi(t)|

qγ1 ds,

nd E|ÃRM
n,22(T )|

q
= 0. Note that for t ∈ [0, T ) =

⋃n−1
i=0 [ti, ti+1) we have that ζ (t) ≤ t < ζ (t) + h. In addition, for

∈ [0, T ) we have that ξi(t) is uniformly distributed on [ζ (t), ζ (t) + h]. Hence, |s − ξi(t)| ≤ h for all t ∈ [0, T ) and
∈ [ζ (t), t] ⊂ [ζ (t), ζ (t) + h), which gives for all t ∈ [0, T )

E
∫ t

ζ (t)
|s − ξi(t)|

qγ1 ds ≤ (t − ζ (t)) · hqγ1 .

herefore,

E|ÃRM
n,22(t)|

q
≤ C5n−q(1+γ1). (32)

sing (27), (31) and (32) we obtain

E|ÃRM
n,2(t)|

q
≤ C6n−q(γ1+

1
2 ), (33)

or all t ∈ [0, T ]. Combining (13), (26) and (33) we get

E|A(t) − ÃRM
n (t)|

q
≤ C1

∫ t

0

n−1∑
i=0

E|X(ti) − X̃RM
n (ti)|

q
·1[ti,ti+1)(s) ds + C2n−qmin{

1
2 +γ1,1}. (34)

The analysis of the diffusion part is as follows. For all t ∈ [0, T ]

E|B(t) − B̃RM
n (t)|

q
≤ C

3∑
k=1

E|B̃RM
n,k (t)|

q
,

here

E|B̃RM
n,1(t)|

q
= E

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(b(s, X(s)) − b(ti, X(s))) · 1[ti,ti+1)(s)dW (s)
⏐⏐⏐q, (35)

E|B̃RM
n,2(t)|

q
= E

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(
b(ti, X(s)) − b(ti, X(ti)) −

∫ s

ti

L1b(Ui)dW (u)
)

·1[ti,ti+1)(s)dW (s)
⏐⏐⏐q, (36)

E|B̃RM
n,3(t)|

q
= E

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(b(ti, X(ti)) − b(Ui)) · 1[ti,ti+1)(s)dW (s)
⏐⏐⏐q. (37)

y Burkholder inequality and Lemma 8 we have for every t ∈ [0, T ] that

E|B̃RM
n,1(t)|

q
≤ C

∫ T

0
E

n−1∑
i=0

|b(s, X(s)) − b(ti, X(s))|q · 1[ti,ti+1)(s)ds

≤ C
n−1∑
i=0

∫ ti+1

ti

E(1 + |X(s)|)q · (s − ti)qγ2ds ≤ Cn−qγ2 ,

nd

E|B̃RM
n,3(t)|

q
≤ C2

∫ t

0

n−1∑
i=0

E|X(ti) − X̃RM
n (ti)|

q
· 1[ti,ti+1)(s)ds.

rom (15) we get for s ∈ [ti, ti+1] that

b(ti, X(s)) − b(ti, X(ti)) −

∫ s

L1b(Ui)dW (u) =

∫ s

α(b, ti, u)du +

∫ s(
β(b, ti, u) − L1b(Ui)

)
dW (u). (38)
ti ti ti
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Hence, from (36), (38), and by Burkholder inequality we get

E|B̃RM
n,2(t)|

q
≤ C1E

∫ t

0

n−1∑
i=0

⏐⏐⏐ ∫ s

ti

α(b, ti, u)du
⏐⏐⏐q · 1[ti,ti+1)(s) ds

+C2E
∫ t

0

n−1∑
i=0

⏐⏐⏐ ∫ s

ti
(β(b, ti, u) − L1b(Ui)) dW (u)

⏐⏐⏐q · 1[ti,ti+1)(s)ds, (39)

where

E
∫ t

0

n−1∑
i=0

⏐⏐⏐ ∫ s

ti

α(b, ti, u)du
⏐⏐⏐q · 1[ti,ti+1)(s)ds ≤

n−1∑
i=0

∫ ti+1

ti

(s − ti)q−1
∫ s

ti

E|α(b, ti, u)|qduds

≤ C ·

(
1 + sup

t∈[0,T ]

E|X(t)|2q
)

·

n−1∑
i=0

∫ ti+1

ti

(s − ti)qds ≤ Cn−q, (40)

E
∫ t

0

n−1∑
i=0

⏐⏐⏐ ∫ s

ti
(β(b, ti, u) − L1b(Ui)) dW (u)

⏐⏐⏐q · 1[ti,ti+1)(s)ds

≤ C · n−(q/2)+1
·

∫ t

0

n−1∑
i=0

(∫ s

ti

E|β(b, ti, u) − L1b(Ui)|qdu
)

· 1[ti,ti+1)(s)ds. (41)

Note that

|β(b, ti, u) − L1b(Ui)| ≤ K 2(1 + |X(u)|) · |u − ti|γ2 + K |X(u) − X(ti)| + K |X(ti) − X̃RM
n (ti)| (42)

and, therefore, for any s ∈ [ti, ti+1] we have∫ s

ti

E|β(b, ti, u) − L1b(Ui)|qdu ≤ C̃1n−qγ2−1
+ C2n−(q/2)−1

+ C3n−1E|X(ti) − X̃RM
n (ti)|

q
. (43)

From (39), (40), (41) and (43) we obtain that

E|B̃RM
n,2(t)|

q
≤ C1n−q

+ C2n−q( 12 +γ2) + C3

∫ t

0

n−1∑
i=0

E|X(ti) − X̃RM
n (ti)|

q
· 1[ti,ti+1)(s)ds.

Hence, for any t ∈ [0, T ] we have

E|B(t) − B̃RM
n (t)|

q
≤ K1n−qγ2 + K2

∫ t

0

n−1∑
i=0

E|X(ti) − X̃RM
n (ti)|

q
· 1[ti,ti+1)(s)ds. (44)

By (34) and (44) we get for all t ∈ [0, T ] that

E|X(t) − X̃RM
n (t)|

q
≤ C1n−qmin{

1
2 +γ1,γ2}

+ C2

∫ t

0

n−1∑
i=0

E|X(ti) − X̃RM
n (ti)|

q
· 1[ti,ti+1)(s)ds,

which implies for all t ∈ [0, T ] that

sup
0≤s≤t

E|X(s) − X̃RM
n (s)|

q
≤ C1n−qmin{

1
2 +γ1,γ2}

+ C2

∫ t

0
sup
0≤u≤s

E|X(u) − X̃RM
n (u)|

q
ds.

inally, by using Gronwall’s inequality we arrive at (12), which ends the proof. ■

emark 5. The idea of time-randomization applied in construction of the randomized Milstein algorithm ARM
n , is

nalogous to that used for Monte Carlo approximation of Lebesgue integrals of scalar functions (see, for example, [19]) and
imilar to [17], where the authors analogously defined randomized Euler scheme. We also refer to [12], where a two-stage
andomized Milstein scheme was constructed and its error was investigated. In particular, if γ2 = min{

1
2 + γ1, 1} then

sup
t∈[0,T ]

∥X(t) − X̃RM
n (t)∥q ≤ Cn−min{

1
2 +γ1,1},

hich recovers the result from [12].
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Remark 6. We compare errors of classical Euler method AE
n , randomized Euler algorithm ARE

n , classical Milstein scheme
M
n , and randomized Milstein algorithm ARM

n in the class F(γ1, γ2, q, K ). Namely, in the case of exact information about
and b, we have that

e(q)(AE
n,F(γ1, γ2, q, K ),W , V i, 0, 0) = O(n−min{γ1,γ2,1/2}),

e(q)(ARE
n ,F(γ1, γ2, q, K ),W , V i, 0, 0) = O(n−min{1/2,γ2}),

e(q)(AM
n ,F(γ1, γ2, q, K ),W , V i, 0, 0) = O(n−min{γ1,γ2}),

e(q)(ARM
n ,F(γ1, γ2, q, K ),W , V i, 0, 0) = O(n−min{

1
2 +γ1,γ2}). (45)

ence, if γ ∈ (0, 1/2] and γ2 ∈ (0, 1] then AE
n and AM

n have the same error O(n−min{γ1,γ2}). Moreover, for γ1 ∈ (0, 1] and
2 ∈ (0, 1/2] the methods ARE

n and ARM
n have the same error O(n−γ2 ). Finally, for γ1 ∈ (1/2, 1) and γ2 ∈ (1/2, 1] the

andomized Milstein algorithm ARM
n outperforms AE

n , A
RE
n , and AM

n .

.2. Performance of randomized derivative-free Milstein algorithm for exact information

In this section we analyze the error of the algorithm Adf−RM
n in the case of exact information. Recall that its

ime-continuous version is denoted by X̃df−RM
n = {X̃df−RM

n (t)}t∈[0,T ].
We now give proof of the following results.

roposition 2. There exists a positive constant C, depending only on the parameters of the class F(γ1, γ2, q, K ), such that
or all n ∈ N and all (a, b, η) ∈ F(γ1, γ2, q, K ) we have

sup
t∈[0,T ]

∥X(t) − X̃df−RM
n (t)∥q ≤ Cn−min{

1
2 +γ1,γ2}, (46)

and, in particular,

∥X(T ) − Adf−RM
n (a, b, η,W , 0, 0)∥q ≤ Cn−min{

1
2 +γ1,γ2}.

Proof. By (12) we have that

sup
t∈[0,T ]

∥X(t) − X̃df−RM
n (t)∥q ≤ Cn−min{

1
2 +γ1,γ2}

+ sup
t∈[0,T ]

∥X̃RM
n (t) − X̃df−RM

n (t)∥q. (47)

Hence, we only need to estimate

sup
t∈[0,T ]

∥X̃RM
n (t) − X̃df−RM

n (t)∥q.

Recall that

Ui = (ti, X̃RM
n (ti)), Vi = (ξi, X̃RM

n (ti)).

In addition, let us denote by

Udf
i = (ti, X̃df−RM

n (ti)), V df
i = (ξi, X̃df−RM

n (ti)).

We have that for all t ∈ [0, T ]

X̃df−RM
n (t) = η + Ãdf−RM

n (t) + B̃df−RM
n (t),

Ãdf−RM
n (t) =

∫ t

0

n−1∑
i=0

a(V df
i )·1[ti,ti+1)(s)ds,

B̃df−RM
n (t) =

∫ t

0

n−1∑
i=0

(
b(Udf

i ) +

∫ s

ti

L1,hb(U
df
i )dW (u)

)
·1[ti,ti+1)(s)dW (s).

Then

E|ÃRM
n (t) − Ãdf−RM

n (t)|
q
≤ C1

∫ t

0

n−1∑
i=0

E|X̃RM
n (ti) − X̃df−RM

n (ti)|
q
· 1[ti,ti+1)(s)ds, (48)

and

E|B̃RM
n (t) − B̃df−RM

n (t)|
q
≤CE

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(b(Ui) − b(Udf
i ))·1[ti,ti+1)(s) dW (s)

⏐⏐⏐q
+ CE

⏐⏐⏐ ∫ t n−1∑(∫ s (
L1b(Ui) − L1,hb(U

df
i )
)

dW (u)
)
·1[ti,ti+1)(s) dW (s)

⏐⏐⏐q.

0 i=0 ti
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Furthermore, by Burkholder inequality and Lemma 5

E
⏐⏐⏐ ∫ t

0

n−1∑
i=0

(b(Ui) − b(Udf
i ))·1[ti,ti+1)(s) dW (s)

⏐⏐⏐q ≤ C
∫ t

0

n−1∑
i=0

E|X̃RM
n (ti) − X̃df−RM

n (ti)|
q
·1[ti,ti+1)(s) ds,

E
⏐⏐⏐ ∫ t

0

n−1∑
i=0

(∫ s

ti

(
L1b(Ui) − L1,hb(U

df
i )
)

dW (u)
)
·1[ti,ti+1)(s) dW (s)

⏐⏐⏐q
≤ C

∫ t

0

n−1∑
i=0

(
(s − ti)q/2−1

·

∫ s

ti

E|L1b(Ui) − L1,hb(U
df
i )|

q
du
)
·1[ti,ti+1)(s) ds

≤ C1

∫ t

0

n−1∑
i=0

E|X̃RM
n (ti) − X̃df−RM

n (ti)|
q
·1[ti,ti+1)(s) ds + C2n−3q/2

(
1 + sup

t∈[0,T ]

E|X̃df−RM
n (t)|

q
)
.

Therefore,

E|B̃RM
n (t) − B̃df−RM

n (t)|
q
≤C1

∫ t

0

n−1∑
i=0

E|X̃RM
n (ti) − X̃df−RM

n (ti)|
q
·1[ti,ti+1)(s) ds

+ C2

(
1 + sup

t∈[0,T ]

E|X̃df−RM
n (t)|

q
)
n−3q/2. (49)

Hence, from (48) and (49) we get for all t ∈ [0, T ]

E|X̃RM
n (t) − X̃df−RM

n (t)|
q
≤C1

∫ t

0

n−1∑
i=0

E|X̃RM
n (ti) − X̃df−RM

n (ti)|
q
·1[ti,ti+1)(s) ds

+ C2

(
1 + sup

t∈[0,T ]

E|X̃df−RM
n (t)|

q
)
n−3q/2.

Hence, by Gronwall’s lemma we obtain

E|X̃RM
n (t) − X̃df−RM

n (t)|
q
≤ C

(
1 + sup

t∈[0,T ]

E|X̃df−RM
n (t)|

q
)
n−3q/2. (50)

Therefore, by (47), (50) and Lemma 7

sup
0≤t≤T

∥X(t) − X̃df−RM
n (t)∥q ≤ C1

(
1 + sup

t∈[0,T ]

∥X̃df−RM
n (t)∥q

)
n−3/2

+ C2n−min{
1
2 +γ1,γ2}

≤ Cn−min{
1
2 +γ1,γ2}. (51)

his ends the proof. ■

Having Proposition 2 we are ready to prove Theorem 1.

.3. Proof of Theorem 1

We set

Ūdf
i = (ti, ˜̄Xdf−RM

n (ti)), V̄ df
i = (ξi, ˜̄Xdf−RM

n (ti)).

he process {
˜̄Xdf−RM
n (t)}t∈[0,T ] can be decomposed as follows

˜̄Xdf−RM
n (t) = η +

˜̄Adf−RM
n (t) +

˜̄Bdf−RM
n (t),

here

˜̄Adf−RM
n (t) =

∫ t

0

n−1∑
i=0

ã(V̄ df
i )·1[ti,ti+1)(s)ds,

˜̄Bdf−RM
n (t) =

∫ t

0

n−1∑
i=0

(
b̃(Ūdf

i ) +

∫ s

ti

L1,hb̃(Ū
df
i )dW (u)

)
·1[ti,ti+1)(s)dW (s). (52)
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Due to Lemma 1 the process

{n−1∑
i=0

(
b̃(Ūdf

i ) +

∫ s

ti

L1,hb̃(Ū
df
i )dW (u)

)
·1[ti,ti+1)(s)

}
s∈[0,T ]

is adapted to {Σ̃n
t }t∈[0,T ] and has cádlág paths. Hence, the Itô integral in (52) is well-defined.

From (46) we have that

sup
t∈[0,T ]

∥X(t) −
˜̄Xdf−RM
n (t)∥q ≤ Cn−min{

1
2 +γ1,γ2}

+ sup
t∈[0,T ]

∥X̃df−RM
n (t) −

˜̄Xdf−RM
n (t)∥q, (53)

and we only need to estimate supt∈[0,T ] ∥X̃
df−RM
n (t) −

˜̄Xdf−RM
n (t)∥q. We have that

E|Ãdf−RM
n (t) −

˜̄Adf−RM
n (t)|q ≤ C

∫ t

0

n−1∑
i=0

E|X̃df−RM
n (ti) −

˜̄Xdf−RM
n (ti)|q · 1[ti,ti+1)(s)ds

+C
(
1 + sup

0≤t≤T
E|

˜̄Xdf−RM
n (t)|q

)
· δ

q
1, (54)

and, by the Burkholder inequality,

E|B̃df−RM
n (t) −

˜̄Bdf−RM
n (t)|q ≤ CE

⏐⏐⏐ ∫ t

0

n−1∑
i=0

(
b(Udf

i ) − b̃(Ūdf
i )
)

·1[ti,ti+1)(s) dW (s)
⏐⏐⏐q

+ CE
⏐⏐⏐ ∫ t

0

n−1∑
i=0

(∫ s

ti

(
L1,hb(U

df
i ) − L1,hb̃(Ū

df
i )
)

dW (u)
)
·1[ti,ti+1)(s) dW (s)

⏐⏐⏐q
≤ C

∫ t

0

n−1∑
i=0

E|b(Udf
i ) − b̃(Ūdf

i )|q·1[ti,ti+1)(s) ds

+ C
∫ t

0

n−1∑
i=0

(s − ti)q/2 · E|L1,hb(U
df
i ) − L1,hb̃(Ū

df
i )|q·1[ti,ti+1)(s) ds. (55)

Note that

E|b(Udf
i ) − b̃(Ūdf

i )|
q
≤ CE|X̃df−RM

n (ti) −
˜̄Xdf−RM
n (ti)|q + Cδq2

(
1 + sup

0≤t≤T
E|

˜̄Xdf−RM
n (t)|q

)
and, by Lemma 6,

E|L1,hb(U
df
i ) − L1,hb̃(Ū

df
i )|

q
≤ C

(
1 + sup

0≤t≤T
E|X̃df−RM

n (t)|
q
+ sup

0≤t≤T
E|

˜̄Xdf−RM
n (t)|q

)
· hq

+KE|X̃df−RM
n (ti) −

˜̄Xdf−RM
n (ti)|q

+ C
(
1 + sup

0≤t≤T
E|

˜̄Xdf−RM
n (t)|q

)
· (1 + δ

q
2) ·

{
δ
q
2, if pb ∈ K1

Lip

(δ2h−1)q, if pb ∈ K2.
(56)

Therefore, we get that for all t ∈ [0, T ]

E|B̃df−RM
n (t) −

˜̄Bdf−RM
n (t)|q ≤ C

∫ t

0

n−1∑
i=0

E|X̃df−RM
n (ti) −

˜̄Xdf−RM
n (ti)|q·1[ti,ti+1)(s) ds

+C
(
1 + sup

0≤t≤T
E|

˜̄Xdf−RM
n (t)|q

)
· δ

q
2

+ C
(
1 + sup

0≤t≤T
E|X̃df−RM

n (t)|q + sup
0≤t≤T

E|
˜̄Xdf−RM
n (t)|q

)
· h3q/2

+ C
(
1 + sup

0≤t≤T
E|

˜̄Xdf−RM
n (t)|q

)
· (1 + δ

q
2) ·

{
(h1/2δ2)q, if pb ∈ K1

Lip

(h−1/2δ2)q, if pb ∈ K2.
(57)
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From (54) and (57) we get

E|X̃df−RM
n (t) −

˜̄Xdf−RM
n (t)|q ≤ C

∫ t

0

n−1∑
i=0

E|X̃df−RM
n (ti) −

˜̄Xdf−RM
n (ti)|q·1[ti,ti+1)(s) ds

+C
(
1 + sup

0≤t≤T
E|

˜̄Xdf−RM
n (t)|q

)
· (δq1 + δ

q
2)

+ C
(
1 + sup

0≤t≤T
E|X̃df−RM

n (t)|q + sup
0≤t≤T

E|
˜̄Xdf−RM
n (t)|q

)
· h3q/2

+ C
(
1 + sup

0≤t≤T
E|

˜̄Xdf−RM
n (t)|q

)
· (1 + δ

q
2) ·

{
(h1/2δ2)q, if pb ∈ K1

Lip

(h−1/2δ2)q, if pb ∈ K2.
(58)

Thereby, the Gronwall’s lemma implies

sup
0≤t≤T

∥X̃df−RM
n (t) −

˜̄Xdf−RM
n (t)∥q ≤ C1

(
1 + sup

0≤t≤T
∥
˜̄Xdf−RM
n (t)∥q

)
· (δ1 + δ2)

+ C2

(
1 + sup

0≤t≤T
∥X̃df−RM

n (t)∥q + sup
0≤t≤T

∥
˜̄Xdf−RM
n (t)∥q

)
· h3/2

+ C3

(
1 + sup

0≤t≤T
∥
˜̄Xdf−RM
n (t)∥q

)
· (1 + δ2) ·

{
h1/2δ2, if pb ∈ K1

Lip
h−1/2δ2, if pb ∈ K2.

(59)

Combining (53), (59), and Lemma 7 we get the hypothesis. ■

4. Lower bounds and optimality of randomized derivative-free Milstein algorithm

This section is dedicated to establishing the lower bounds on the worst-case error of an arbitrary algorithm from Φn
and to prove that the randomized derivative-free Milstein algorithm X̄df−RM

n is asymptotically optimal.

Lemma 3. Let q ∈ [2,+∞), γ1, γ2 ∈ (0, 1], K ∈ (0,+∞), then

e(q)n (F(γ1, γ2, q, K ),W , V i, δ1, δ2) = Ω(max{n−min{1/2+γ1,γ2}, δ1, δ2}), (60)

for i = 1, 2 as n → +∞, max{δ1, δ2} → 0+.

Proof. The proof is similar to that presented in [10], however, for reader’s convenience we provide the details.
Let us consider the following subclasses of F(γ1, γ2, q, K ):

G1(γ1, γ2, q, K ) = Āγ1
K × {0} × {0}, (61)

G2(γ1, γ2, q, K ) = {0} × B̄γ2K × {0}, (62)

where

Āγ1
K = {a ∈ Aγ1

K | a(t, y) = a(t, 0) for all t ∈ [0, T ], y ∈ R},

B̄γ2K = {b ∈ Bγ2K | b(t, y) = b(t, 0) for all t ∈ [0, T ], y ∈ R}. (63)

In the class G1(γ1, γ2, q, K ) the approximation of X(T ) is equivalent to the problem of approximating the Lebesgue
integral X(T ) =

∫ T
0 a(t, 0)dt , while in G2(γ1, γ2, q, K ) the problem reduces to approximation of scalar stochastic Itô integral

X(T ) =
∫ T
0 b(t, 0)dW (t).

Since {a} × {b} = Va(0)× V i
b(0) ⊂ Va(δ1)× V i

b(δ2) for any (a, b, η) ∈ F(γ1, γ2, q, K ) and i = 1, 2, we get, by considering
the subclasses (61), (62) of F(γ1, γ2, q, K ), that

e(q)n (F(γ1, γ2, q, K ),W , V i, δ1, δ2) ≥ e(q)n (F(γ1, γ2, q, K ),W , V i, 0, 0)

≥ max{e(q)n (G1(γ1, γ2, q, K ),W , V i, 0, 0), e(q)n (G2(γ1, γ2, q, K ),W , V i, 0, 0)}. (64)

e now recall known results on the lower bounds in the case of exact information, i.e. δ1 = δ2 = 0. For Lebesgue
ntegration of Hölder continuous functions under randomized standard information the following lower bound follows
rom [19]

e(q)n (G1(γ1, γ2, q, K ),W , V i, 0, 0) = Ω(n−(1/2+γ1)), (65)

or i = 1, 2. Furthermore, in [17] and [20] the following lower bound was established for Itô integration
(q) i −γ2
en (G2(γ1, γ2, q, K ),W , V , 0, 0) = Ω(n ), (66)
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for i = 1, 2. (The lower bound (66) holds also in case when the evaluation points for W are chosen in an adaptive way,
see [20] for details.) By (64), (65), and (66) we arrive at

e(q)n (F(γ1, γ2, q, K ),W , V i, δ1, δ2) = Ω(n−min{
1
2 +γ1,γ2}). (67)

Let us assume that δ1, δ2 ∈ [0,min{K , 1}]. Since G1(γ1, γ2, q, K ), G2(γ1, γ2, q, K ) ⊂ F(γ1, γ2, q, K ), Va(0) × V i
b(δ2) ⊂

a(δ1) × V i
b(δ2), and Va(δ1) × V i

b(0) ⊂ Va(δ1) × V i
b(δ2), we have that

e(q)n (F(γ1, γ2, q, K ),W , V i, δ1, δ2)

≥ max{e(q)n (G1(γ1, γ2, q, K ),W , V i, δ1, 0), e(q)n (G2(γ1, γ2, q, K ),W , V i, 0, δ2)}, (68)

nd we need to establish the lower bounds for e(q)n (G1(γ1, γ2, q, K ),W , V i, δ1, 0), e
(q)
n (G2(γ1, γ2, q, K ),W , V i, 0, δ2). To do

his we need the following auxiliary inequality, that is a direct consequence of the triangle inequality and the definition
f the worst-case error (3). Let G be a subclass of F(γ1, γ2, q, K ). Then for any algorithm A ∈ Φn and any (a1, b1, η),

(a2, b2, η) ∈ G, such that(
Va1 (δ1) × V i

b1 (δ2)
)

∩

(
Va2 (δ1) × V i

b2 (δ2)
)

̸= ∅, (69)

t holds

e(q)(A, G,W , V i, δ1, δ2) ≥
1
2
∥X(a1, b1, η)(T ) − X(a2, b2, η)(T )∥q, (70)

where i = 1, 2. Since (δ1, 0, 0), (−δ1, 0, 0) ∈ G1(γ1, γ2, q, K ) and (0, 0) ∈

(
Vδ1 (δ1) × {0}

)
∩

(
V−δ1 (δ1) × {0}

)
, we get by

(70) that

e(q)(A, G1(γ1, γ2, q, K ),W , V i, δ1, 0) ≥
1
2
∥X(δ1, 0, 0)(T ) − X(−δ1, 0, 0)(T )∥q = Tδ1. (71)

oreover, (0, δ2, 0), (0,−δ2, 0) ∈ G2(γ1, γ2, q, K ) and (0, 0) ∈

(
{0} × V i

δ2
(δ2)

)
∩

(
{0} × V i

−δ2
(δ2)

)
. Therefore, by (70)

e(q)(A, G2(γ1, γ2, q, K ),W , V i, 0, δ2) ≥
1
2
∥X(0, δ2, 0)(T ) − X(0,−δ2, 0)(T )∥q = mqT 1/2δ2, (72)

where mq = ∥Z∥q and Z is normally distributed random variable with mean zero and variance equal to 1. Hence, (68),
(71), and (72) imply

e(q)n (F(γ1, γ2, q, K ),W , V i, δ1, δ2) = Ω(max{δ1, δ2}) (73)

for i = 1, 2. Finally, from (67) and (73) we get (60). □

The following theorem is the main result of the paper and establishes optimality of randomized derivative-free Milstein
algorithm.

Theorem 2. Let q ∈ [2,+∞), γ1, γ2 ∈ (0, 1], K ∈ (0,+∞), then

e(q)n (F(γ1, γ2, q, K ),W , V 1, δ1, δ2) = Θ(max{n−min{1/2+γ1,γ2}, δ1, δ2}),

as n → +∞, max{δ1, δ2} → 0+. An algorithm of optimal order is the randomized derivative-free Milstein algorithm X̄df−RM
n .

Sharp bounds for the class V 2 in the case when δ2 > 0 remain as an open problem.

5. Numerical experiments

We present numerical results for randomized derivative-free Milstein algorithm X̄df−RM
n for the following problem{

dX(t) = sin(M · X(t) · tγ1 ) dt + cos(M · X(t) · tγ2 ) dW (t), t ∈ [0, T ],

X(0) = 1.0, (74)

where M = 100, γ1 ∈ (0, 1], γ2 = min{γ1 + 0.5, 1}. Drift and diffusion coefficients are Hölder continuous functions with
Hölder exponents γ1 and γ2, respectively (see Remark 1). The expected theoretical convergence rate for this problem,
according to Theorem 1, is n−γ2 as n tends to +∞, and δ1, δ2 tend to zero.

Note that the exact solution of (74) is not known. Hence, in the simulations we computed in parallel the approximation
of the solution for mesh of cardinality n and 1000n, treating the one on dense mesh as the exact. The rule of thumb for
such a choice is as follows. The projected convergence rate is at least n−0.5, so the error for 1000n should be at least an
order of magnitude lower than the error on n points, hence,

∥X̄df−RM (T ) − X̄df−RM (T )∥ ≈ ∥X(T ) − X̄df−RM (T )∥ .
1000n n 2 n 2
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Fig. 1. Error for exact/noisy information for the case γ1 = 0.2, γ2 = 0.7.

Fig. 2. Error for exact/noisy information for the case γ1 = 0.1, γ2 = 0.6.

he expectation is estimated as an average taken over K = 104 trajectories of the driving Wiener process. The
nformational noise the coefficients a and b is simulated as follows. We assume that the corrupting functions p(t, y) for
rift and diffusion coefficients are bounded, i.e. |pa(t, y)| ≤ δ1 and |pb(t, y)| ≤ δ2. The noising procedure was simulated as
realization of a random variable uniformly distributed on [0, 1], scaled by the respective precision level δ1 or δ2. Each
orruption was generated independently. The obtained results are presented in Figs. 1 and 2. The plots present minus
ogarithm of the approximation error based on the logarithm of number of discretization points, hence, the theoretical
rror should form a line with the slope corresponding to the theoretical rate of convergence. For the obtained numerical
esults, the empirical convergence rate was also computed (through the linear regression of the log n vs − log error curve,
here log denotes the logarithm with base 10), the summary of those can be find in Table 1.
The obtained numerical results confirm the theoretical results. The most surprising might be the fact that for a set

recision on diffusion coefficient and with increasing number of discretization points, the error grows. That indicates that
t is likely that the theoretical upper bound for error estimate for analyzed method is sharp with respect to the factor of
2n1/2 in Theorem 1. This behavior is not observed for the set precision δ1 on the drift coefficient and increasing number
f discretization points. The results also prove that with precision levels tending to zero with the theoretical convergence
ate of the method, the observed convergence rate behaves similarly as by the exact information.

Moreover, the obtained results clearly indicate that this method cannot be optimal, as we can simply omit part of the
nformation used, not letting the noise (coming from the corrupted diffusion coefficient) to increase the overall error of
he method. ( We can see from Figs. 1 and 2 that for a given precision level δ and for a larger number of evaluations used
2
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Table 1
Empirical convergence rates for various precision levels.

γ1 = 0.1, γ2 = 0.6 γ1 = 0.2, γ2 = 0.7

Theoretical 0.6 0.7

Exact 0.54 0.55

δ1 = δ2 = 0.1 −0.20 −0.19

δ1 = 0.1, δ2 = 0.05 0.01 0.00

δ1 = δ2 = n−0.5 0.48 0.48

δ1 = 0, δ2 = 0.02 0.25 0.23

δ1 = 0, δ2 = 0.01 0.33 0.31

δ1 = 1, δ2 = 0 0.52 0.54

the error is higher than for the algorithm using fewer number of evaluations.) We believe that it is possible to propose an
adaptive procedure that chooses an optimal number of discretization points according to a given precision level. However,
we leave it as an open problem. Furthermore, in this paper we considered only noisy information about drift and diffusion
coefficients. In case when also the evaluations of the Wiener process are corrupted direct application of the technique
used in this paper is not possible. Hence, further extension of research on the subject is needed both for the lower and
the upper bounds on the error.
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Appendix

The proofs of the following two lemmas are straightforward and will be omitted.

Lemma 4. If f ∈ F γK , γ ∈ {γ1, γ2}, then for all (t, y) ∈ [0, T ] × R

|f (t, y)| ≤ K1(1 + |y|),⏐⏐⏐∂ jf
∂yj

(t, y)
⏐⏐⏐ ≤ K , j = 1, 2,

here K1 = K (1 + max{T γ1 , T γ2}).

Lemma 5. For all n ∈ N, b ∈ Bγ2K , and all t ∈ [0, T ], y, z ∈ R it holds

|L1b(t, y)| ≤ KK1(1 + |y|),

|L1,hb(t, y)| ≤ KK1(1 + |y|),

|L1b(t, y) − L1,hb(t, z)| ≤ K |y − z| + KK1(1 + |z|)h,
where h = T/n and K1 = K (1 + max{T γ1 , T γ2}).

In the following lemma we investigate behavior of difference operator L1,h in the case of inexact information about b.

Lemma 6. There exists a positive constant C, such that for all n ∈ N, δ1, δ2 ∈ [0, 1], (a, b) ∈ Aγ1
K × Bγ2K , (ã, b̃) ∈

Va(δ1) × (V 1
b (δ2) ∪ V 2

b (δ2)), and all t ∈ [0, T ], y, z ∈ R it holds

|ã(t, y)| ≤ C(1 + δ1)(1 + |y|), (75)

|b̃(t, y)| ≤ C(1 + δ2)(1 + |y|), (76)

|L1,hb̃(t, y)| ≤ C(1 + δ2)(1 + |y|) ·

{
1 + δ2, if pb ∈ K1

Lip,

1 + δ2h−1, if pb ∈ K2,
(77)

|L1,hb(t, y) − L1,hb̃(t, z)| ≤ C(1 + |y| + |z|)h + K |y − z|

+C(1 + |z|) · (1 + δ2) ·

{
δ2, if pb ∈ K1

Lip

δ2h−1, if pb ∈ K2.
(78)
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Proof. The proof of (75) and (76) is straightforward.
We have that

|L1,hb(t, y) − L1,hb̃(t, z)| ≤ |L1,hb(t, y) − L1,hb(t, z)| + |L1,hb(t, z) − L1,hb̃(t, z)|. (79)

From Lemma 5 we get that

|L1,hb(t, y) − L1,hb(t, z)| ≤ |L1,hb(t, y) − L1b(t, z)| + |L1b(t, z) − L1,hb(t, z)|
≤ K |y − z| + K1K (1 + |y|)h + K1K (1 + |z|)h
≤ C(1 + |y| + |z|)h + K |y − z|. (80)

Furthermore,

|L1,hb(t, z) − L1,hb̃(t, z)| ≤ |b(t, z)| · |∆hb(t, z) −∆hb̃(t, z)| + δ2 · |pb(t, z)| · |∆hb̃(t, z)|

≤ K1(1 + |z|) · |∆hb(t, z) −∆hb̃(t, z)| + δ2 · (1 + |z|) · |∆hb̃(t, z)|. (81)

Note that

|∆hb̃(t, z)| ≤ |∆hb(t, z)| + δ2 · |∆hpb(t, z)| ≤ K + δ2 · |∆hpb(t, z)|. (82)

Moreover,

|∆hb(t, z) −∆hb̃(t, z)| = δ2 · |∆hpb(t, z)|,

and

|∆hpb(t, z)| ≤

{
1, if pb ∈ K1

Lip

2h−1, if pb ∈ K2.
(83)

Hence,

|L1,hb(t, z) − L1,hb̃(t, z)| ≤ (K1 + δ2) · δ2 · (1 + |z|) · |∆hpb(t, z)| + K · δ2 · (1 + |z|)

≤ C(1 + |z|) · (1 + δ2) ·

{
δ2, if pb ∈ K1

Lip

δ2 · h−1, if pb ∈ K2.
(84)

Combining (79), (80), and (84) we get (78). Finally, by (76), (82), (83), and

|L1,hb̃(t, y)| ≤ C(1 + δ2) · (1 + |y|) · (K + |∆hpb(t, y)|) (85)

the result (77) follows. ■

Lemma 7.

(i) There exists a positive constant C, depending only on the parameters of the class F(γ1, γ2, q, K ), such that for all n ∈ N,
(a, b, η) ∈ F(γ1, γ2, q, K ), we have

sup
t∈[0,T ]

E|X̃RM
n (t)|

q
≤ C, (86)

sup
t∈[0,T ]

E|X̃df−RM
n (t)|

q
≤ C . (87)

(ii) There exists a positive constant C, depending only on the parameters of the class F(γ1, γ2, q, K ), such that for all n ∈ N,
δ1, δ2 ∈ [0, 1], (a, b, η) ∈ F(γ1, γ2, q, K ), (ã, b̃) ∈ Va(δ1) × V 1

b (δ2), we have

sup
t∈[0,T ]

E|
˜̄Xdf−RM
n (t)|q ≤ C(1 + δ

q
1 + δ

q
2 + δ

2q
2 ) eCT (1+δ

q
1+δ

q
2+δ

2q
2 ). (88)

(iii) There exists a positive constant C, depending only on the parameters of the class F(γ1, γ2, q, K ) and q, such that for all
n ∈ N, δ1, δ2 ∈ [0, 1], (a, b, η) ∈ F(γ1, γ2, q, K ), (ã, b̃) ∈ Va(δ1) × V 2

b (δ2), we have

sup
t∈[0,T ]

E|
˜̄Xdf−RM
n (t)|q ≤ C(1 + δ

q
1 + δ

q
2 + (1 + δ

q
2)δ

q
2n

q/2) eCT (1+δ
q
1+δ

q
2+(1+δq2)δ

q
2n

q/2). (89)

Proof. We only show (ii) and (iii), since the proof of (i) is analogous.
Take (a, b, η) ∈ F(γ1, γ2, q, K ), (ã, b̃) ∈ Va(δ1) × (V 1

b (δ2) ∪ V 2
b (δ2)). By Lemma 1 we have that the random variables

b̃(ti, ˜̄Xdf−RM
n (ti)), L1,hb̃(ti, ˜̄Xdf−RM

n (ti)) are Σ̃n
ti -measurable, while the increment W (t) − W (ti) is independent of Σ̃n

ti for all
1/2 1 (m2

+1)(t − t )
i = 0, 1, . . . , n−1 and t ∈ [ti, ti+1]. Additionally, ∥W (t)−W (ti)∥q = mq · (t − ti) , and ∥Iti,t (W ,W )∥q ≤ 2 2q i
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for t ∈ [ti, ti+1], where mq is the qth root of the qth absolute moment of a normal variable with zero mean and variance
qual to 1. This and Lemma 6 give, for all i = 0, 1, . . . , n − 1 and t ∈ [ti, ti+1], that

∥
˜̄Xdf−RM
n (t) −

˜̄Xdf−RM
n (ti)∥q ≤ ∥ã(ξi, ˜̄Xdf−RM

n (ti))∥q · (t − ti)

+ ∥b̃(ti, ˜̄Xdf−RM
n (ti))∥q · ∥W (t) − W (ti)∥q

+ ∥L1,hb̃(ti, ˜̄Xdf−RM
n (ti))∥q · ∥Iti,t (W ,W )∥q

≤ C · (1 + δ1 + δ2) · (1 + δ2 · max{1, h−1
}) · (1 + ∥

˜̄Xdf−RM
n (ti)∥q) · (t − ti)1/2, (90)

where C > 0 depends only on the parameters of the class F(γ1, γ2, q, K ). Since ∥
˜̄Xdf−RM
n (0)∥q = ∥η∥q ≤ ∥η∥2q ≤ K , we

get by (90) and induction that

max
i∈{0,1,...,n}

∥
˜̄Xdf−RM
n (ti)∥q < +∞. (91)

From (90) and (91) we get that supt∈[0,T ] ∥
˜̄Xdf−RM
n (t)∥q < +∞. Therefore, the function [0, T ] ∋ t ↦→ sup0≤u≤t E|

˜̄Xdf−RM
n (u)|q

∈ R+∪{0} is Borel measurable (as a nondecreasing function) and bounded. We now show that we can bound this mapping
from above by a finite number that depends only on the parameters of the class F(γ1, γ2, q, K ), δ1, and δ2.

We have that for all t ∈ [0, T ]

E|
˜̄Xdf−RM
n (t)|

q
≤ C(E|η|q + E|

˜̄Adf−RM
n (t)|q + E|

˜̄Bdf−RM
n (t)|q).

rom the Hölder inequality we obtain that

E|
˜̄Adf−RM
n (t)|q ≤ C1(1 + δ

q
1) + C2(1 + δ

q
1)
∫ t

0

n−1∑
i=0

E|
˜̄Xdf−RM
n (ti)|q·1[ti,ti+1)(s) ds.

oreover, by Burkholder inequality

E|
˜̄Bdf−RM
n (t)|q ≤ C3(1 + δ

q
2) + C4(1 + δ

q
2)
∫ t

0

n−1∑
i=0

E|
˜̄Xdf−RM
n (ti)|q·1[ti,ti+1)(s) ds

+ C5hq/2
∫ t

0

n−1∑
i=0

E|L1,hb̃(Ū
df
i )|q·1[ti,ti+1)(s) ds, (92)

where, by Lemma 6, we have

|L1,hb̃(Ū
df
i )|q ≤ C1 · (1 + δ

q
2) · (1 + |

˜̄Xdf−RM
n (ti)|q) ·

{
1 + δ

q
2, if pb ∈ K1

Lip

1 + δ
q
2 · h−q, if pb ∈ K2.

(93)

Therefore, if pb ∈ K1
Lip we get

E|
˜̄Bdf−RM
n (t)|q ≤ C1(1 + δ

q
2) + C2(1 + δ

2q
2 )

+C3(1 + δ
q
2 + δ

2q
2 ) ·

∫ t

0

n−1∑
i=0

E|
˜̄Xdf−RM
n (ti)|q·1[ti,ti+1)(s) ds (94)

while for pb ∈ K2 it holds that

E|
˜̄Bdf−RM
n (t)|q ≤ C1(1 + δ

q
2) · (1 + δ

q
2 · h−q/2)

+C3(1 + δ
q
2) · (1 + δ

q
2 · h−q/2) ·

∫ t

0

n−1∑
i=0

E|
˜̄Xdf−RM
n (ti)|q·1[ti,ti+1)(s) ds. (95)

By applying Gronwall’s lemma we get the thesis in (ii) and (iii). ■

Finally, we recall the well-known bound on the absolute L2q-moment of the solution X of (1). The following lemma is
a direct consequence of Theorems 4.3 and 4.4 in Chapter 2 in [15].

Lemma 8. There exists a positive constant C, depending only on the parameters of the class F(γ1, γ2, q, K ), such that for all
(a, b, η) ∈ F(γ1, γ2, q, K ), we have sup

t∈[0,T ]

|X(t)|

2q

≤ C .
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