期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS | 卷:126 |
Positive scalar curvature and the Euler class | |
Article | |
Yu, Jianqing1  Zhang, Weiping2,3  | |
[1] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China | |
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China | |
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China | |
关键词: Positive scalar curvature; Flat vector bundle; Euler class; | |
DOI : 10.1016/j.geomphys.2018.01.015 | |
来源: Elsevier | |
【 摘 要 】
We prove the following generalization of the classical Lichnerowicz vanishing theorem: if F is an oriented flat vector bundle over a closed spin manifold M such that TM carries a metric of positive scalar curvature, then <(A) over cap (TM)e(F), [M]> = 0, where e(F) is the Euler class of F. (C) 2018 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_geomphys_2018_01_015.pdf | 387KB | download |