期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:126
Positive scalar curvature and the Euler class
Article
Yu, Jianqing1  Zhang, Weiping2,3 
[1] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词: Positive scalar curvature;    Flat vector bundle;    Euler class;   
DOI  :  10.1016/j.geomphys.2018.01.015
来源: Elsevier
PDF
【 摘 要 】

We prove the following generalization of the classical Lichnerowicz vanishing theorem: if F is an oriented flat vector bundle over a closed spin manifold M such that TM carries a metric of positive scalar curvature, then <(A) over cap (TM)e(F), [M]> = 0, where e(F) is the Euler class of F. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2018_01_015.pdf 387KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次