期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:85
On Lipschitz solutions of the constant astigmatism equation
Article
Hlavac, Adam1  Marvan, Michal1 
[1] Silesian Univ Opava, Math Inst Opava, Opava 74601, Czech Republic
关键词: Constant astigmatism equation;    Constant astigmatism surface;    Orthogonal equiareal pattern;    sine-Gordon equation;    Symmetry invariant solution;    Slip-line field;   
DOI  :  10.1016/j.geomphys.2014.05.020
来源: Elsevier
PDF
【 摘 要 】

We show that the solutions of the constant astigmatism equation that correspond to a class of surfaces found by Lipschitz in 1887, exactly match the Lie symmetry invariant solutions and constitute a four-dimensional manifold. The two-dimensional orbit space with respect to the Lie symmetry group is described. Our approach relies on the link between constant astigmatism surfaces and orthogonal equiareal patterns. The counterpart sine-Gordon solutions are shown to be Lie symmetry invariant as well. (C) 2014 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2014_05_020.pdf 1136KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次