期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:141
Cohomologies, deformations and extensions of n-Hom-Lie algebras
Article
Song, Lina1  Tang, Rong1 
[1] Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R China
关键词: Dual representations;    Extensions;    Deformations;    Derivations;    Cohomologies;    n-Hom-Lie algebras;   
DOI  :  10.1016/j.geomphys.2019.03.003
来源: Elsevier
PDF
【 摘 要 】

In this paper, first we give the cohomologies of an n-Hom-Lie algebra and introduce the notion of a derivation of an n-Hom-Lie algebra. We show that a derivation of an n-Horn-Lie algebra is a 1-cocycle with the coefficient in the adjoint representation. We also give the formula of the dual representation of a representation of an n-Horn-Lie algebra. Then, we study (n-1)-order deformation of an n-Horri-Lie algebra. We introduce the notion of a Hom-Nijenhuis operator, which could generate a trivial (n-1)-order deformation of an n-Horn-Lie algebra. Finally, we introduce the notion of a generalized derivation of an n-Horn-Lie algebra, by which we can construct a new n-Horn-Lie algebra, which is called the generalized derivation extension of an n-Hom-Lie algebra. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2019_03_003.pdf 384KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次