期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS | 卷:162 |
Gromov-Hausdorff convergence of state spaces for spectral truncations | |
Article | |
van Suijlekom, Walter D.1  | |
[1] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands | |
关键词: Noncommutative geometry; Gromov-Hausdorff convergence; Quantum metric spaces; | |
DOI : 10.1016/j.geomphys.2020.104075 | |
来源: Elsevier | |
【 摘 要 】
We study the convergence aspects of the metric on spectral truncations of geometry. We find general conditions on sequences of operator system spectral triples that allows one to prove a result on Gromov-Hausdorff convergence of the corresponding state spaces when equipped with Connes' distance formula. We exemplify this result for spectral truncations of the circle, Fourier series on the circle with a finite number of Fourier modes, and matrix algebras that converge to the sphere. (C) 2020 The Author. Published by Elsevier B.V.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_geomphys_2020_104075.pdf | 765KB | download |