期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:162
Gromov-Hausdorff convergence of state spaces for spectral truncations
Article
van Suijlekom, Walter D.1 
[1] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
关键词: Noncommutative geometry;    Gromov-Hausdorff convergence;    Quantum metric spaces;   
DOI  :  10.1016/j.geomphys.2020.104075
来源: Elsevier
PDF
【 摘 要 】

We study the convergence aspects of the metric on spectral truncations of geometry. We find general conditions on sequences of operator system spectral triples that allows one to prove a result on Gromov-Hausdorff convergence of the corresponding state spaces when equipped with Connes' distance formula. We exemplify this result for spectral truncations of the circle, Fourier series on the circle with a finite number of Fourier modes, and matrix algebras that converge to the sphere. (C) 2020 The Author. Published by Elsevier B.V.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2020_104075.pdf 765KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次