期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:500
Gromov-Hausdorff convergence of quantised intervals
Article
Gotfredsen, Thomas1  Kaad, Jens1  Kyed, David1 
[1] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
关键词: Quantum metric spaces;    Podles sphere;    Gromov-Hausdorff distance;   
DOI  :  10.1016/j.jmaa.2021.125131
来源: Elsevier
PDF
【 摘 要 】

The Podles quantum sphere S-q(2) admits a natural commutative C*-subalgebra I-q with spectrum {0} boolean OR {q(2k): k is an element of N-0}, which may therefore be considered as a quantised version of a classical interval. We study here the compact quantum metric space structure on I-q inherited from the corresponding structure on S-q(2), and provide an explicit formula for the metric induced on the spectrum. Moreover, we show that the resulting metric spaces vary continuously in the deformation parameter qwith respect to the Gromov-Hausdorff distance, and that they converge to a classical interval of length pi as q tends to 1. (c) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2021_125131.pdf 369KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次