期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:114
Spinorial representation of submanifolds in metric Lie groups
Article
Bayard, Pierre1  Roth, Julien2  Jimenez, Berenice Zavala1 
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[2] Univ Paris Est Marne La Vallee, Lab Anal & Math Appl, Champs Sur Marne, France
关键词: Spin geometry;    Metric Lie groups;    Isometric immersions;    Weierstrass representation;   
DOI  :  10.1016/j.geomphys.2016.12.011
来源: Elsevier
PDF
【 摘 要 】

In this paper we give a spinorial representation of submanifolds of any dimension and codimension into Lie groups equipped with left invariant metrics. As applications, we get a spinorial proof of the Fundamental Theorem for submanifolds into Lie groups, we recover previously known representations of submanifolds in R-n and in the 3-dimensional Lie groups S-3 and E(kappa, tau), and we get a new spinorial representation for surfaces in the 3-dimensional semi-direct products: this achieves the spinorial representations of surfaces in the 3-dimensional homogeneous spaces. We finally indicate how to recover a Weierstrass-type representation for CMC-surfaces in 3-dimensional metric Lie groups recently given by Meeks, Mira, Perez and Ros. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2016_12_011.pdf 541KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次