期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:111
On the Chern-Gauss-Bonnet theorem for the noncommutative 4-sphere
Article
Arnlind, Joakim1  Wilson, Mitsuru2 
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Univ Western Ontario, Middlesex Coll, London, ON N6A 5B7, Canada
关键词: Noncommutative differential geometry;    Chern-Gauss-Bonnet theorem;    Levi-Civita connection;    Riemannian curvature;    Noncommutative 4-sphere;   
DOI  :  10.1016/j.geomphys.2016.10.016
来源: Elsevier
PDF
【 摘 要 】

We construct a differential calculus over the noncommutative 4-sphere in the framework of pseudo-Riemannian calculi, and show that for every metric in a conformal class of perturbations of the round metric, there exists a unique metric and torsion-free connection. Furthermore, we find a localization of the projective module corresponding to the space of vector fields, which allows us to formulate a Chern-Gauss-Bonnet type theorem for the noncommutative 4-sphere. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2016_10_016.pdf 474KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次