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vector fields, which allows us to formulate a Chern–Gauss–Bonnet type theorem for the
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1. Introduction

Over the last years, there have been increasing interests in understanding the curvature of noncommutative manifolds.
Starting from seminal work on the scalar curvature and Gauss–Bonnet type theorems for the noncommutative torus [1–3]
many interesting papers that discuss different aspects of curvature in the noncommutative setting have followed [4–14].
Note that these are only examples of recent progress in the area; several authors have previously considered curvature
in this context (see e.g. [15–20]). Although connections on projective modules and their corresponding curvatures are
natural objects in noncommutative geometry, classical objects that are built from the curvature tensor, like Ricci and scalar
curvature, donot always have straight-forward analogues. Therefore, it is interesting to study as towhat extent such concepts
are relevant for noncommutative geometry.

For Riemannian manifolds, the Chern–Gauss–Bonnet theorem provides an important link between geometry and
topology. It states that the integral of the Pfaffian of the curvature form (of a closed orientable even dimensional manifold)
is proportional to the Euler characteristic, which is a topological invariant. For a two dimensional manifold, the Pfaffian
is simply the scalar curvature, which reduces the Chern–Gauss–Bonnet theorem to the Gauss–Bonnet theorem. Therefore,
to understand similar theorems for two dimensional noncommutative manifolds, one needs to find a proper definition of
the scalar curvature. For a Riemannian manifold, the asymptotic expansion of the heat kernel contains information about
the scalar curvature in one of the coefficients. The expansion of the heat kernel makes sense even for a noncommutative
manifold, and the very same coefficient serves as a definition of noncommutative scalar curvature. For the noncommutative
torus, the scalar curvature corresponding to certain perturbations of the flat metric has been computed, and it is possible to
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show that aGauss–Bonnet type theoremholds; i.e., the trace of the scalar curvature is independent of themetric perturbation
[1,2]. However, for higher dimensional manifolds, it is not clear how to define the analogue of the Pfaffian of the curvature
form in order to formulate the Chern–Gauss–Bonnet theorem.

In this paper we construct a differential calculus over the noncommutative 4-sphere, in the framework of pseudo-
Riemannian calculi [13], and introduce a projective module in close analogy with the space of vector fields on the classical
4-sphere. Moreover, via a suitable localization of the algebra, we find a local trivialization of the projectivemodule and prove
the existence of (unique) metric and torsion-free connections for a class of perturbations of the round metric. Finally, we
show that in this particular case, there exists a naive analogue of the Pfaffian of the curvature form, which allows us to prove
a Chern–Gauss–Bonnet type theorem for the noncommutative 4-sphere.

This paper is organized as follows: In Section 2.1 we briefly recall the concept of a pseudo-Riemannian calculus, and
Section 2.2 introduces a particular parametrization of the classical 4-sphere. Sections 3.1 and 3.2 are devoted to the
construction of a real metric calculus over the noncommutative 4-sphere, and Section 3.3 discusses certain aspects of
localization. These results are then used in Section 3.4 to construct a pseudo-Riemannian calculus, givingmetric and torsion-
free connections for a class of perturbed metrics. Finally, Section 4 introduces a trace for the noncommutative 4-sphere, and
formulates and proves a version of the Chern–Gauss–Bonnet theorem.

2. Preliminaries

2.1. Pseudo-Riemannian calculi

Let us briefly recall the terminology from [13] concerning pseudo-Riemannian calculi, as this is the context in which we
shall construct a differential calculus over the noncommutative 4-sphere.

To define a pseudo-Riemannian calculus over an algebraA, we proceed in two steps. First, we define a real metric calculus
over an algebra A by choosing a (right) A-module M , together with a non-degenerate bilinear form (the metric), as well
as a Lie algebra of derivations and a map ϕ that associates an element of M to each derivation. Next, a pseudo-Riemannian
calculus is defined to be a real metric calculus for which there exists a metric and torsion-free connection onM .

To fix our notation and terminology, let us recall the following definitions:

Definition 2.1. LetM be a right A-module. A map h : M×M → A is called a hermitian form onM if

h(U, V + W ) = h(U, V ) + h(U,W )
h(U, Va) = h(U, V )a
h(U, V )∗ = h(V ,U).

A hermitian form is non-degenerate if h(U, V ) = 0 for all V ∈ M implies that U = 0. For brevity, we simply refer to a
non-degenerate hermitian form as ametric onM . The pair (M, h), whereM is a rightA-module and h is a hermitian form on
M , is called a (right) hermitian A-module. If h is a metric, we say that (M, h) is a (right) metric A-module.

Definition 2.2 ([13]). Let (M, h) be a (right) metricA-module, let g ⊆ Der(A) be a (real) Lie algebra of hermitian derivations
and let ϕ : g → M be a R-linear map. If we denote the pair (g, ϕ) by gϕ , the triple (M, h, gϕ) is called a real metric calculus if

(1) the imageMϕ = ϕ(g) generatesM as an A-module,
(2) h(E, E ′)∗ = h(E, E ′) for all E, E ′

∈ Mϕ .

Definition 2.3 ([13]). Let (M, h, gϕ) be a real metric calculus and let ∇ denote an affine connection on (M, g). If

h(∇dE, E ′) = h(∇dE, E ′)∗

for all E, E ′
∈ Mϕ and d ∈ g then (M, h, gϕ,∇) is called a real connection calculus.

Definition 2.4 ([13]). Let (M, h, gϕ,∇) be a real connection calculus. The calculus ismetric if

d
(
h(U, V )

)
= h

(
∇dU, V

)
+ h

(
U,∇dV

)
for all d ∈ g, U, V ∈ M , and torsion-free if

∇d1ϕ(d2) − ∇d2ϕ(d1) − ϕ
(
[d1, d2]

)
= 0

for all d1, d2 ∈ g. A metric and torsion-free real connection calculus overM is called a pseudo-Riemannian calculus over M .

Given a realmetric calculus (M, h, gϕ), it is natural to ask if it is possible to find an affine connection such that (M, h, gϕ,∇)
is a pseudo-Riemannian calculus. In general, this is not possible, but if such a connection exists, it is unique.

Theorem 2.5 ([13]). Let (M, h, gϕ) be a real metric calculus over M. Then there exists at most one affine connection ∇ on (M, g),
such that (M, h, gϕ,∇) is a pseudo-Riemannian calculus.
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2.2. Embedding of S4 in R5

The geometric constructions for the noncommutative 4-sphere will closely follow that of classical geometry. Therefore,
let us review an explicit parametrization of S4, giving a chart that covers almost all of themanifold. Furthermore, we present
a particular basis for vector fields over that chart.

As a subset of R5, the 4-dimensional sphere is defined as

S4 = {(x1, x2, x3, x4, x5) ∈ R5
: (x1)2 + (x2)2 + (x3)2 + (x4)2 + (x5)2 = 1},

and we let U0 ⊆ S4 denote the chart of S4 given by

x1 = cos(ξ1) cos(ϕ) cos(ψ) x2 = sin(ξ1) cos(ϕ) cos(ψ)

x3 = cos(ξ2) sin(ϕ) cos(ψ) x4 = sin(ξ2) sin(ϕ) cos(ψ)

x5 = sin(ψ),

where 0 < ξ1, ξ2 < 2π , 0 < ϕ < π/2 and −π/2 < ψ < π/2. Equivalently, one may consider z = x1 + ix2, w = x3 + ix4
and t = x5 with

z = eiξ1 cos(ϕ) cos(ψ)

w = eiξ2 sin(ϕ) cos(ψ)
t = sin(ψ).

At each point p ∈ U0, the tangent space TpS4 is spanned by the vectors

∂ξ1 x⃗ = (− sin ξ1 cosϕ cosψ, cos ξ1 cosϕ, cosψ, 0, 0) = (−x2, x1, 0, 0, 0)

∂ξ2 x⃗ = (0, 0,− sin ξ2 sinϕ cosψ, cos ξ2 sinϕ cosψ, 0) = (0, 0,−x4, x3, 0)
∂ϕ x⃗ = (− cos ξ1 sinϕ cosψ,− sin ξ1 sinϕ cosψ, cos ξ2 cosϕ cosψ, sin ξ2 cosϕ cosψ, 0)
∂ψ x⃗ = (− cos ξ1 cosϕ sinψ,− sin ξ1 cosϕ sinψ,

− cos ξ2 sinϕ sinψ,− sin ξ2 sinϕ sinψ, cosψ).

These vector fields are defined in the local chart U0 and wewould like to extend them to global vector fields on S4 (however,
not providing a basis at each point of S4). As written above, ∂ξ1 x⃗ and ∂ξ2 x⃗may be extended to all of S4, since all components
can be expressed in terms of x1, . . . , x5. By rescaling ∂ϕ x⃗ and ∂ψ x⃗ one obtains

−|z||w|∂ϕ x⃗ = (x1|w|
2, x2|w|

2,−x3|z|2,−x4|z|2, 0)

− cosψ ∂ψ x⃗ = (x1t, x2t, x3t, x4t,−|z|2 − |w|
2),

which are well defined as vector fields on S4. Thus, the globally defined vector fields given by

e1 = (−x2, x1, 0, 0, 0) e2 = (0, 0,−x4, x3, 0)

e3 = (x1|w|
2, x2|w|

2,−x3|z|2,−x4|z|2, 0) e4 = (x1t, x2t, x3t, x4t,−|z|2 − |w|
2),

span the space of vector fields over U0. For later comparison, let us write down the action of the derivations corresponding
to the above vector fields:

∂1z = iz ∂1w = 0 ∂1t = 0
∂2z = 0 ∂2w = iw ∂2t = 0
∂3z = z|w|

2 ∂3w = −w|z|2 ∂3t = 0
∂4z = zt ∂4w = wt ∂4t = t2 − 1.

(2.1)

3. The noncommutative 4-sphere

3.1. Basic properties of S4θ

For θ ∈ [0, 1), we let S4θ denote the unital ∗-algebra (over C) generated by Z , W and T , satisfying the relations [21,22]

WZ = qZW W ∗Z = q̄ZW ∗

ZZ∗
+ WW ∗

+ T 2
= 1

T ∗
= T [T , Z] = [T ,W ] = [W ,W ∗

] = [Z, Z∗
] = 0,

(3.1)

where q = ei2πθ . Furthermore, ZZ∗
∈ Z(S4θ ) andWW ∗

∈ Z(S4θ ) where Z(S4θ ) denotes the center of S
4
θ . It follows from (3.1) that

a linear basis for S4θ is given by the elements

Z j(Z∗)kW l(W ∗)mT ϵ
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for j, k, l,m ∈ {0, 1, 2, . . .} and ϵ ∈ {0, 1} (where, e.g., higher powers of T are eliminated by using the relation T 2
=

1 − ZZ∗
− WW ∗). For convenience, let us introduce the multi-index notation I = (j, k, l,m, ϵ) and

eI = Z j(Z∗)kW l(W ∗)mT ϵ

such that, in this notation, every element a ∈ S4θ can uniquely be written as

a =

∑
I

aIeI

with aI ∈ C. It is useful to develop the multi-index notation a bit further. Namely, for I = (j, k, l,m, ϵ) we write I = (Î, ϵ)
with Î = (j, k, l,m). Furthermore, we introduce

1Z = (1, 1, 0, 0, 0) = (1̂Z , 0) and 1W = (0, 0, 1, 1, 0) = (1̂W , 0),

andwewrite I+J for component-wise addition ofmulti-indices. Let us now state the result ofmultiplying twobasis elements
in the following lemma:

Lemma 3.1. If I1 = (j1, k1, l1,m1, ϵ1) and I2 = (j2, k2, l2,m2, ϵ2) then

eI1eI2 =

{
q(l1−m1)(j2−k2)eI1+I2 if ϵ1 + ϵ2 ≤ 1
q(l1−m1)(j2−k2)

(
e(Î1+Î2,0) − e(Î1+Î2+1̂Z ,0) − e(Î1+Î2+1̂W ,0)

)
if ϵ1 + ϵ2 = 2.

Proof. Using (3.1) one obtains

eIeJ = Z j1 (Z∗)k1W l1 (W ∗)m1T ϵ1Z j2 (Z∗)k2W l2 (W ∗)m2T ϵ2

= qj2(l1−m1)Z j1+j2 (Z∗)k1W l1 (W ∗)m1 (Z∗)k2W l2 (W ∗)m2T ϵ1+ϵ2

= qj2(l1−m1)qk2(m1−l1)Z j1+j2 (Z∗)k1+k2W l1 (W ∗)m1W l2 (W ∗)m2T ϵ1+ϵ2

= q(l1−m1)(j2−k2)Z j1+j2 (Z∗)k1+k2W l1+l2 (W ∗)m1+m2T ϵ1+ϵ2 .

Now, if ϵ1 + ϵ2 ≤ 1 then the statement in the lemma is proved. If ϵ1 + ϵ2 = 2, then the statement follows after using that
T 2

= 1 − ZZ∗
− WW ∗, and the fact that both ZZ∗ and WW ∗ are central. □

Let us now proceed to state a few properties of S4θ that we shall need in the following.

Proposition 3.2. The elements ZZ∗, WW ∗ and 1 − T 2 are regular (i.e. none of them is a zero divisor).

Proof. Let us first prove that ZZ∗ is not a zero divisor. Thus, let a be an element of S4θ , given as

a =

∑
I

aIeI

and compute (by using Lemma 3.1)

ZZ∗a =

∑
I

aIe1Z eI =

∑
I

q(0−0)(j−k)aIeI+1Z =

∑
I

aIeI+1Z .

Clearly, setting ZZ∗a = 0 gives aI = 0 for all I since {eI} is a basis for S4θ . Similarly, we consider

WW ∗a =

∑
I

aIe1W eI =

∑
I

q(1−1)(j−k)eI+1W =

∑
I

aIeI+1W

and conclude thatWW ∗a = 0 gives a = 0. Finally, we compute

(1 − T 2)a = (|Z |
2
+ |W |

2)a =

∑
I

aI
(
e1Z + e1W

)
eI =

∑
I

aIeI+1Z +

∑
I

aIeI+1W

=

∑
j=0, l,m≥1

aI−1W eI +

∑
k=0, j,l,m≥1

aI−1W eI +

∑
l=0, j,k≥1

aI−1Z e
I

+

∑
m=0, j,k,l≥1

aI−1Z e
I
+

∑
j,k,l,m≥1

(
aI−1Z + aI−1W

)
eI .

Note that in the above expression, every basis element appears at most once. Therefore, setting (1− T 2)a = 0 immediately
gives aj,k,l,m,ϵ = 0 if at least one of j, k, l,m is zero. If j, k, l,m ≥ 1 one gets

aI−(0,0,1,1,0) = −aI−(1,1,0,0,0) ⇒ aI = −aI+(1,1,−1,−1),
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which, by iteration, gives

aI = (−1)naI+(n,n,−n,−n) for 0 ≤ n ≤ min(l,m).

Hence, since aj,k,l,m,ϵ = 0 if at least one of j, k, l,m is zero, one concludes that

a(j,k,l,m,ϵ) =

{
(−1)laj+l,k+l,0,m−l,ϵ = 0 if l ≤ m
(−1)maj+m,k+m,l−m,0,ϵ = 0 if l ≥ m

which, together with the previous observation, shows that a = 0. □

We have already noted that ZZ∗,WW ∗ and T are central elements. The next results show that if θ is an irrational number,
then these elements generate the center of S4θ .

Proposition 3.3. If θ is irrational then Z(S4θ ) is generated by ZZ∗, WW ∗ and T . That is, every a ∈ Z(S4θ ) can be uniquely written
as

a =

∑
j,k,ϵ

ajkϵ(ZZ∗)j(WW ∗)kT ϵ

where ajkϵ ∈ C, j, k ∈ {0, 1, 2, . . .} and ϵ ∈ {0, 1}.

Proof. Let a be an arbitrary (nonzero) central element of S4θ and write

a =

∑
I

aIeI .

In particular, a has to commute with Z , and one computes

[a, Z] =

∑
I

aI
(
eIe(1,0,0,0,0) − e(1,0,0,0,0)eI

)
=

∑
I

aI (ql−m
− 1)eI+(1,0,0,0,0).

Demanding that [a, Z] = 0 gives (ql−m
− 1)aI = 0. If a ̸= 0, there exists an I such that aI ̸= 0, which implies that ql−m

= 1.
Since θ is assumed to be irrational it follows that l = m. Similarly, if a commutes withW then

0 = [a,W ] =

∑
I

aI
(
eIe(0,0,1,0,0) − e(0,0,1,0,0)eI

)
=

∑
I

aI
(
1 − qj−k)eI+(0,0,1,0,0)

giving j = k in analogy with the previous case. Thus, an element a ∈ Z(S4θ ) must be of the following form

a =

∑
j,k,ϵ

aj,k,ϵ
(
ZZ∗

)j(WW ∗
)kT ϵ,

and it is clear that any element of the above form is in Z(S4θ ) since ZZ∗, WW ∗ and T are central. □

Remark 3.4. Note that Proposition 3.3 does not hold if θ is rational. For instance, if qN = 1 then both ZN andWN are central
elements.

Let us introduce

X1
=

1
2

(
Z + Z∗

)
X2

=
1
2i

(
Z − Z∗

)
X3

=
1
2

(
W + W ∗

)
X4

=
1
2i

(
W − W ∗

)
|Z |

2
= ZZ∗

|W |
2

= WW ∗ X5
= T ,

and note that |Z |
2

= (X1)2 + (X2)2 and |W |
2

= (X3)2 + (X4)2, as well as

(X1)2 + (X2)2 + (X3)2 + (X4)2 + (X5)2 = |Z |
2
+ |W |

2
+ T 2

= 1.

Moreover, the normality of Z and W is equivalent to [X1, X2
] = [X3, X4

] = 0. Next, let us show that there exist
noncommutative analogues of the four derivations appearing in (2.1).

Proposition 3.5. There exist hermitian derivations ∂̃1, ∂̃2, ∂̃3, ∂̃4 such that

∂̃1Z = iZ ∂̃1W = 0 ∂̃1T = 0

∂̃2Z = 0 ∂̃2W = iW ∂̃2T = 0

∂̃3Z = Z |W |
2 ∂̃3W = −W |Z |

2 ∂̃3T = 0

∂̃4Z = ZT ∂̃4W = WT ∂̃4T = T 2
− 1,
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and it follows that

[∂̃1, ∂̃2] = [∂̃1, ∂̃3] = [∂̃1, ∂̃4] = 0

[∂̃2, ∂̃3] = [∂̃2, ∂̃4] = 0

[∂̃3, ∂̃4] = −2T ∂̃3.

Proof. If the derivations exist, the relations given above (together with the fact that they are hermitian derivations),
completely determine their actions via Leibniz’ rule. However, for these derivations to be well-defined, one has to check
that they respect the defining relations (3.1) of S4θ . For instance

∂̃1(WZ − qZW ) = (∂̃1W )Z + W (∂̃1Z) − q(∂̃1Z)W − qZ(∂̃1W )
= iWZ − iqZW = i(WZ − qZW ) = 0,

and

∂̃3(WZ − qZW ) = (∂̃3W )Z + W (∂̃3Z) − q(∂̃3Z)W − qZ(∂̃3W )

= −W |Z |
2Z + WZ |W |

2
− qZ |W |

2W + qZW |Z |
2

= (WZ − qZW )|W |
2
− (WZ − qZW )|Z |

2
= 0

(using that |Z |
2 and |W |

2 are central). In this way, relations (3.1) can be checked for the derivations ∂̃1, ∂̃2, ∂̃3, ∂̃4. □

3.2. A real metric calculus over S4θ

In this section, we shall introduce a differential calculus over S4θ in close analogy with the classical parametrization in
Section 2.2. The calculus will be constructed in the framework of pseudo-Riemannian calculi, as developed in [13], and
briefly reviewed in Section 2.1.

To this end, we introduce four elements of the free (right) module (S4θ )
5 that correspond to the classical vector fields

e1, e2, e3, e4 in Section 2.2. However, in order to properly define a connection, one needs to slightly rescale e1 and e2. Thus,
we consider the following elements of (S4θ )

5:

E1 = (−X2(1 − T 2), X1(1 − T 2), 0, 0, 0)

E2 = (0, 0,−X4(1 − T 2), X3(1 − T 2), 0)

E3 = (X1
|W |

2, X2
|W |

2,−X3
|Z |

2,−X4
|Z |

2, 0)

E4 = (X1T , X2T , X3T , X4T , T 2
− 1),

and letM be the submodule of (S4θ )
5 generated by {E1, E2, E3, E4}. Note that there are no ordering ambiguities when defining

these elements, since |Z |
2, |W |

2 and T are central. This module is the analogue of the local vector fields over the chart U0,
and the corresponding local triviality is reflected in the following result.

Proposition 3.6. The module M = {E1a + E2b + E3c + E4d : a, b, c, d ∈ S4θ } is a free (right) S4θ -module of rank 4, and
{E1, E2, E3, E4} is a basis for M.

Proof. By definition, {E1, E2, E3, E4} generatesM . To prove that {E1, E2, E3, E4} is a basis, we assume that

E1a + E2b + E3c + E4d = 0 (3.2)

and show that this implies that a = b = c = d = 0. Relation (3.2) is equivalent to the equations

−X2(1 − T 2)a + X1
|W |

2c + X1Td = 0

X1(1 − T 2)a + X2
|W |

2c + X2Td = 0

−X4(1 − T 2)b − X3
|Z |

2c + X3Td = 0

X3(1 − T 2)b − X4
|Z |

2c + X4Td = 0

(1 − T 2)d = 0,

which immediately implies that d = 0 (since 1 − T 2 is not a zero divisor by Proposition 3.2), and the remaining equations
may be written as

−X2(1 − T 2)a + X1
|W |

2c = 0 (3.3)

X1(1 − T 2)a + X2
|W |

2c = 0 (3.4)

−X4(1 − T 2)b − X3
|Z |

2c = 0 (3.5)

X3(1 − T 2)b − X4
|Z |

2c = 0. (3.6)
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The sum of (3.3), multiplied from the left with X1, and (3.4), multiplied from the left by X2 gives(
(X1)2 + (X2)2

)
|W |

2c = |Z |
2
|W |

2c = 0,

(using that [X1, X2
] = 0) which implies that c = 0 since neither |Z |

2 nor |W |
2 is a zero divisor (by Proposition 3.2). Hence,

one is left with the equations

X2(1 − T 2)a = 0 X1(1 − T 2)a = 0

X4(1 − T 2)b = 0 X3(1 − T 2)b = 0,

and since 1 − T 2 is not a zero divisor one obtains

X2a = 0 X1a = 0

X4b = 0 X3b = 0,

giving(
(X1)2 + (X2)2

)
a = |Z |

2a = 0(
(X3)2 + (X4)2

)
b = |W |

2b = 0,

which implies that a = b = 0. Thus, we have shown that E1a + E2b + E3c + E4d = 0 necessarily gives a = b = c = d = 0,
which proves that {E1, E2, E3, E4} is indeed a basis forM . □

In the moduleM , we introduce the restriction of the canonical metric on (S4θ )
5:

h(U, V ) =

4∑
a,b=1

(Ua)∗habV b

for U = EaUa and V = EbV b, where

hab =

5∑
i=1

(E i
a)

∗(E i
b),

giving

(hab) =

⎛⎜⎜⎝
|Z |

2(1 − T 2)2 0 0 0
0 |W |

2(1 − T 2)2 0 0
0 0 |Z |

2
|W |

2(1 − T 2) 0
0 0 0 1 − T 2

⎞⎟⎟⎠ .

As we shall be interested in perturbations of the standard metric, we introduce

hδ = δh

where δ ∈ S4θ is assumed to be a hermitian, central and regular element. Since hδ is diagonal, and each diagonal element is
regular, it follows immediately that hδ is non-degenerate onM; i.e.

h(U, V ) = 0 for all V ∈ M ⇒ U = 0.

Thus, the pair (M, hδ) is ametricmodule (cf. Definition 2.1). To construct a realmetric calculus over (M, hδ) (cf. Definition 2.2),
we need to associate derivations to E1, E2, E3, E4. In analogy with the classical situation, we consider the following
derivations

∂1 = (1 − T 2)∂̃1 ∂2 = (1 − T 2)∂̃2
∂3 = ∂̃3 ∂4 = ∂̃4,

with ∂̃1, ∂̃2, ∂̃3, ∂̃4 given as in Proposition 3.5. (Note that ∂1 and ∂2 are derivations since 1− T 2 is central.) These derivations
generate an infinite-dimensional Lie algebra.

Proposition 3.7. For n ∈ N0, the hermitian derivations

∂
(n)
1 = T n(1 − T 2)∂̃1, ∂

(n)
2 = T n(1 − T 2)∂̃2, ∂

(n)
3 = T n∂̃3, ∂4 = ∂̃4

span an infinite-dimensional Lie algebra, where

[∂
(n)
1 , ∂

(n)
2 ] = [∂

(n)
1 , ∂

(n)
3 ] = [∂

(n)
2 , ∂

(n)
3 ] = 0

[∂4, ∂
(n)
i ] = (n + 2)∂ (n+1)

i − n∂ (n−1)
i ,
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for i = 1, 2, 3 (with the convention that n∂ (n−1)
i = 0 if n = 0). Moreover, it follows that

∂1|Z |
2

= 0 ∂1|W |
2

= 0 ∂1(1 − T 2) = 0

∂2|Z |
2

= 0 ∂2|W |
2

= 0 ∂2(1 − T 2) = 0

∂3|Z |
2

= 2|Z |
2
|W |

2 ∂3|W |
2

= −2|Z |
2
|W |

2 ∂3(1 − T 2) = 0

∂4|Z |
2

= 2|Z |
2T ∂4|W |

2
= 2|W |

2T ∂4(1 − T 2) = 2T (1 − T 2),

where ∂i ≡ ∂
(0)
i for i = 1, 2, 3.

Proof. The proof consists of straight-forward computations using the definition of ∂̃1, ∂̃2, ∂̃3, ∂̃4 in Proposition 3.5. □

We let g denote the (real) Lie algebra spanned by ∂ (n)1 , ∂
(n)
2 , ∂

(n)
3 , ∂4, and let ϕ : g → M be the R-linear map defined by

ϕ(∂ (n)i ) = EiT n for i = 1, 2, 3,
ϕ(∂4) = E4.

The pair (g, ϕ) is denoted by gϕ .

Proposition 3.8. The triple (M, hδ, gϕ) is a real metric calculus over S4θ .

Proof. As already noted, themetric hδ is non-degenerate onM and, by definition, {E1, E2, E3, E4} generatesM , which implies
that the image of ϕ generates M . Finally, since every component of hδ is hermitian, it follows that hδ(E, E ′) is hermitian for
all E, E ′ in the image of ϕ. This shows that the triple (M, hδ, gϕ) satisfies all the requirements of a real metric calculus. □

Given a real metric calculus (M, hδ, gϕ), there exists at most one metric and torsion-free connection on the module M
(cf. Theorem 2.5). In Section 3.4 we proceed to show that such a connection exists, but let us first discuss certain aspects of
localization on S4θ .

3.3. The local algebra S4θ,loc

For the classical 4-sphere, the vector fields corresponding to E1, E2, E3, E4 are linearly independent in the chart given in
Section 2.2. Thus, as already mentioned, the module M does not correspond to the module of vector fields of S4, but rather
to a local trivialization in the chart U0. In this chart, the functions |w|

2, |z|2 and 1− t2 are invertible, and in analogy with this
situationwe shall introduce a localization of the algebra S4θ in order to be able to performcomputations in a ‘‘noncommutative
chart’’. Moreover, let us also consider the inverse of 1 + T 2 (which is globally invertible in the classical setting) as it is an
algebraic prototype of the kind of perturbations of themetric that wewill consider. To this end, we let S be themultiplicative
subset of S4θ generated by 1, |Z |

2, |W |
2, 1− T 2 and 1+ T 2. Since every element of S is central, S trivially fulfills the left (and

right) Ore condition [23]. Hence, the localization of S4θ at S exists, andwedenote it by S4θ,loc. In otherwords, S4θ,loc is constructed
from S4θ by adding the formal inverses of |Z |

2, |W |
2, 1 − T 2 and 1 + T 2. Clearly, (M, hδ, gϕ), as constructed above, is also a

real metric calculus over S4θ,loc. In what follows, we shall discuss the two algebras in parallel.
Let us take a closer look at the structure of the noncommutative localization we have introduced. The algebra S4θ has been

localized to include elements, which are classically not globally defined, and the corresponding free module M has been
defined, which we claim to be the local trivialization of the module of vector fields. Now, is there a global module of vector
fields, for which M is a localization? For the noncommutative 4-sphere, a particular projective module presents itself as a
natural candidate. Let {ei}5i=1 denote the standard basis of the free (right) S4θ -module (S4θ )

5. The endomorphism algebra of
(S4θ )

5 isM5(S4θ ), which implies that an endomorphism can be given in terms of matrix elements with respect to the standard
basis. By defining P to be the endomorphism given by the matrix entries P ij

= δij1− X iX j, one may easily check that P is a
projection; i.e.

(P2)ij =

5∑
k=1

P ikPkj
=

5∑
k=1

(δik1 − X iXk)(δkj1 − XkX j)

= δij1 − X iX j
− X iX j

+

5∑
k=1

X i(Xk)2X j
= δij1 − X iX j

= P ij

due to the fact that

(X1)2 + (X2)2 + (X3)2 + (X4)2 + (X5)2 = 1.

Let us denote the image of P by TS4θ , which is, by definition, a finitely generated projective module. In classical geometry,
P is the projector that defines the module of vector fields on S4. Let us now show that, over the local algebra S4θ,loc, this
module is isomorphic to the module of the real metric calculus we have previously constructed. As defined above, let S be
the multiplicative set generated by 1, |Z |

2, |W |
2, 1 − T 2, 1 + T 2.
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Proposition 3.9. The localizations, with respect to the multiplicative set S, of TS4θ and M are isomorphic as right S4θ,loc-modules.

Proof. First of all, it is easy to check that E1, E2, E3, E4 ∈ TS4θ ; for instance,

5∑
i=1

X iE i
1 = X1(−X2) + X2X1

= 0,

since [X1, X2
] = 0, which implies that P(E1) = E1 and E1 ∈ TS4θ . Thus, it follows that M ⊆ TS4θ . Next, we will show that

TS4θ ⊆ M , by explicitly writing P(ei) (for i = 1, 2, 3, 4, 5) as linear combinations of E1, E2, E3, E4. Since {P(ei)}5i=1 generates
TS4θ , this shows that every element of TS4θ can be written in terms of E1, E2, E3, E4. We claim that

P(e1) = −E1X2
|Z |

−2(1 − T 2)−1
+ E3X1

|Z |
−2(1 − T 2)−1

+ E4X1T (1 − T 2)−1

P(e2) = E1X1
|Z |

−2(1 − T 2)−1
+ E3X2

|Z |
−2(1 − T 2)−1

+ E4X2T (1 − T 2)−1

P(e3) = −E2X4
|W |

−2(1 − T 2)−1
− E3X3

|W |
−2(1 − T 2)−1

+ E4X3T (1 − T 2)−1

P(e4) = E2X3
|W |

−2(1 − T 2)−1
− E3X4

|W |
−2(1 − T 2)−1

+ E4X4T (1 − T 2)−1

P(e5) = −E4.

Let us show that P(e1) can be written as the linear combination given above. The proof of the other four identities is
analogous. First, one checks that

P(e1) =
(
1 − (X1)2,−X2X1,−X3X1,−X4X1,−X5X1).

Next, write

U = −E1X2
|Z |

−2(1 − T 2)−1
+ E3X1

|Z |
−2(1 − T 2)−1

+ E4X1T (1 − T 2)−1

= (U1,U2,U3,U4,U5),

and compute the components one by one

U1
= (X2)2|Z |

−2
+ (X1)2|W |

2
|Z |

−2(1 − T 2)−1
+ (X1)2T 2(1 − T 2)−1

= (X2)2|Z |
−2

+ (X1)2|W |
2
|Z |

−2(1 − T 2)−1

− (X1)2(1 − T 2)(1 − T 2)−1
+ (X1)2(1 − T 2)−1

= −(X1)2 + |Z |
−2(1 − T 2)−1

(
(X2)2(1 − T 2) + (X1)2(|Z |

2
+ |W |

2)
)

(using |Z |
2
+ |W |

2
+ T 2

= 1)

= −(X1)2 + |Z |
−2(1 − T 2)−1

(
(X2)2(1 − T 2) + (X1)2(1 − T 2)

)
= −(X1)2 + |Z |

−2((X1)2 + (X2)2
)

= 1 − (X1)2,

U2
= −X1X2

|Z |
−2

+ X2X1
|W |

2
|Z |

−2(1 − T 2)−1
+ X2X1T 2(1 − T 2)−1

(using [X1, X2
] = 0)

= −X2X1
|Z |

−2(1 − T 2)−1(
1 − T 2

− |W |
2)

+ X2X1T 2(1 − T 2)−1

= −X2X1
|Z |

−2(1 − T 2)−1
|Z |

2
+ X2X1T 2(1 − T 2)−1

= −X2X1(1 − T 2)−1(
1 − T 2)

= −X2X1,

U3
= −X3X1(1 − T 2)−1

+ X3X1T 2(1 − T 2)−1

= −X3X1(1 − T 2)−1(1 − T 2) = −X3X1,

U4
= −X4X1(1 − T 2)−1

+ X4X1T 2(1 − T 2)−1

= −X4X1(1 − T 2)−1(1 − T 2) = −X4X1,

U5
= (T 2

− 1)X1T (1 − T 2)−1
= −X1T = −X1X5.

Thus, we have shown that

P(e1) = −E1X2
|Z |

−2(1 − T 2)−1
+ E3X1

|Z |
−2(1 − T 2)−1

+ E4X1T (1 − T 2)−1,

which, together with the other four analogous computations, shows that TS4θ is contained inM . Combined with the fact that
M ⊆ TS4θ one can conclude that TS4θ = M as right S4θ,loc-modules. □
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3.4. Pseudo-Riemannian calculus

To construct a connection ∇ on M , such that (M, hδ, gϕ,∇) is a pseudo-Riemannian calculus, we consider the following
class of perturbations. Let us assume that

∂aδ = 2αaδ,

where αa ∈ S4θ,loc is hermitian, for a = 1, 2, 3, 4. The connection will be constructed over S4θ,loc, but we shall see that
perturbations in certain directions give connections over S4θ .

Proposition 3.10. Let δ ∈ S4θ,loc be a hermitian, regular and central element, such that ∂aδ = 2αaδ, for a = 1, 2, 3, 4, where
αa ∈ S4θ,loc and α

∗
a = αa. Then there exists a unique connection ∇ , such that (M, hδ, gϕ,∇) is a pseudo-Riemannian calculus over

S4θ,loc, and ∇ is given by

∇1E1 = E1α1 − E2α2|Z |
2
|W |

−2
− E3

(
α3|W |

−2
+ 1

)
(1 − T 2) − E4(α4 + T )|Z |

2(1 − T 2)
∇1E2 = ∇2E1 = E1α2 + E2α1

∇1E3 = ∇3E1 = E1(α3 + |W |
2) + E3α1

∇1E4 = E1(α4 + T ) + E4α1

∇4E1 = E1(α4 + 3T ) + E4α1

∇2E2 = −E1α1|W |
2
|Z |

−2
+ E2α2 − E3

(
α3|Z |

−2
− 1

)
(1 − T 2) − E4(α4 + T )|W |

2(1 − T 2)

∇2E3 = ∇3E2 = E2(α3 − |Z |
2) + E3α2

∇2E4 = E2(α4 + T ) + E4α2

∇4E2 = E2(α4 + 3T ) + E4α2

∇3E3 = −E1α1|W |
2(1 − T 2)−1

− E2α2|Z |
2(1 − T 2)−1

+ E3(α3 + |W |
2
− |Z |

2) − E4(α4 + T )|Z |
2
|W |

2

∇3E4 = E3(α4 + T ) + E4α3

∇4E3 = E3(α4 + 3T ) + E4α3

∇4E4 = −E1α1|Z |
−2(1 − T 2)−1

− E2α2|W |
−2(1 − T 2)−1

− E3α3|Z |
−2

|W |
−2

+ E4(α4 + T ),

and

∇
∂
(n)
i
Ea =

(
∇iEa

)
T n

for i = 1, 2, 3, a = 1, 2, 3, 4, where ∇a ≡ ∇∂a .

Proof. Let us recall (cf. [13]) that Kozul’s formula

2h (∇d1E2, E3) = d1h(E2, E3) + d2h(E3, E1) − d3h(E1, E2)
−h

(
E1, ϕ([d2, d3])

)
+ h

(
E2, ϕ([d3, d1])

)
+ h

(
E3, ϕ([d1, d2])

)
,

(3.7)

where E1, E2, E3 ∈ Mϕ and d1, d2, d3 ∈ g, gives a straight-forward way of finding a connection onM such that (M, hδ, gϕ,∇)
is a pseudo-Riemannian calculus. Namely, if one finds Uab ∈ M such that

2h (Uab, Ec) = ∂ah(Eb, Ec) + ∂bh(Ea, Ec) − ∂ch(Ea, Eb)
−h

(
Ea, ϕ([∂b, ∂c])

)
+ h

(
Eb, ϕ([∂c, ∂a])

)
+ h

(
Ec, ϕ([∂a, ∂b])

) (3.8)

for all a, b, c ∈ {1, 2, 3, 4} then (since the module M is free) one may set ∇aEb = Uab, and it follows that (M, hδ, gϕ,∇)
is a pseudo-Riemannian calculus (see Corollary 3.8 in [13]). It is straight-forward to check that the expressions given in
Proposition 3.10 fulfill (3.8). For instance, to check Kozul’s formula for ∇1E1 one sets

Ka = hδ(∇1E1, Ea) − ∂1hδ(E1, Ea) +
1
2
∂ahδ(E1, E1) + hδ

(
E1, ϕ([∂1, ∂a])

)
which gives

K1 = hδ(∇1E1, E1) − α1δ|Z |
2(1 − T 2)2

= α1hδ(E1, E1) − α1δ|Z |
2(1 − T 2)2

= α1δ|Z |
2(1 − T 2)2 − α1δ|Z |

2(1 − T 2)2 = 0,

K2 = hδ(∇1E1, E2) + α2δ|Z |
2(1 − T 2)2

= −α2|Z |
2
|W |

−2hδ(E2, E2) + α2δ|Z |
2(1 − T 2)2

= −α2|Z |
2
|W |

−2
|W |

2(1 − T 2)2 + α2δ|Z |
2(1 − T 2)2 = 0,
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K3 = hδ(∇1E1, E3) +
1
2
∂3

(
δ|Z |

2(1 − T 2)2
)

= −(1 + α3|W |
−2)(1 − T 2)hδ(E3, E3) +

(
α3δ|Z |

2
+ δ|Z |

2
|W |

2)(1 − T 2)2

= −(1 + α3|W |
−2)δ|Z |

2
|W |

2(1 − T 2)2 +
(
α3δ|Z |

2
+ δ|Z |

2
|W |

2)(1 − T 2)2 = 0,

K4 = hδ(∇1E1, E4) +
1
2
∂4

(
δ|Z |

2(1 − T 2)2
)
− hδ(E1, E1)2T

= −(α4 + T )δ|Z |
2(1 − T 2)2 +

(
α4 + 3T

)
δ|Z |

2(1 − T 2)2 − 2δ|Z |
2T (1 − T 2)2

= 0.

This shows that ∇1E1 satisfies Kozul’s formula (3.8). The other connection components can be checked in an analogous way.
Let us now consider the claim that

∇
∂
(n)
i
Ea =

(
∇iEa

)
T n.

This fact is easily derived from Kozul’s formula. Namely, one notes that

ϕ
(
[∂a, ∂

(n)
i ]

)
= ϕ

(
[∂a, ∂i]

)
T n

+ Ei(∂aT n)

and computes using Kozul’s formula:

2hδ
(
∇
∂
(n)
i
Eb, Ec

)
=

(
∂ihδ(Eb, Ec)

)
T n

+ ∂b
(
hδ(Ec, EiT n)

)
− ∂c

(
hδ(EiT n, Eb)

)
− hδ

(
Ei, ϕ([∂b, ∂c])

)
T n

+ hδ
(
Eb, ϕ([∂c, ∂

(n)
i ])

)
+ hδ

(
Ec, ϕ([∂

(n)
i , ∂b])

)
=

(
∂ihδbc + ∂bhδci − ∂chδib

)
T n

+ hδci(∂bT
n) − hδib(∂cT

n) − hδ
(
Ei, ϕ([∂b, ∂c])

)
T n

+ hδ
(
Eb, ϕ([∂c, ∂i])

)
T n

+ hδbi(∂cT
n) + hδ

(
Ec, ϕ([∂i, ∂b])

)
T n

− hδci(∂bT
n)

= 2hδ
(
∇∂iEb, Ec

)
T n

= 2hδ
(
(∇∂iEb)T

n, Ec
)
,

using that hδab = hδba and the fact that T is hermitian and central. Since the metric is non-degenerate, it follows that

∇
∂
(n)
i
Eb = (∇∂iEb)T

n. □

Note that if α1 = α2 = α3 = 0, the connection in Proposition 3.10 only involves elements of S4θ and is therefore a valid
connection for (M, hδ, gϕ,∇) over S4θ . In particular, this is true for the unperturbed metric; i.e. for δ = 1.

In Section 3.3 we constructed the projective module TS4θ and showed that it is isomorphic toM (as a right S4θ,loc-module)
in Proposition 3.9. As is well known, a projective module defined by a projector P , admits a connection of the form

∇̄∂U = P
(
ei∂(U i)

)
which is compatiblewith the canonicalmetric on the freemodule. Thus, having argued that onemay regard themoduleM as
a localization of the (global) module TS4θ , it is natural to ask if the connection on TS4θ , defined in the above manner, coincides
with the connection found in Proposition 3.10 for the unperturbed metric.

Proposition 3.11. Let U = eiU i be an element of TS4θ and set

∇̄aU = P
(
ei∂a(U i)

)
,

for a = 1, 2, 3, 4. Then ∇̄aEb = ∇aEb for a, b = 1, 2, 3, 4 and δ = 1.

Proof. Let us prove the statement by computing ∇̄aEb for a, b = 1, 2, 3, 4 (i.e. 16 components in total) and compare it with
Proposition 3.10 for δ = 1. Since the calculations are straight-forward we shall only present one of them here to illustrate
how they are performed. Thus,

∇̄1E1 = P
(
∂1(−X2(1 − T 2), X1(1 − T 2), 0, 0, 0)

)
= P

(
(−X1,−X2, 0, 0, 0)

)
(1 − T 2)2

= (−X1,−X2, 0, 0, 0)(1 − T 2)2 − eiX i(
−(X1)2 − (X2)2

)
(1 − T 2)2

= (−X1,−X2, 0, 0, 0)(1 − T 2)2 + (X1, X2, X3, X4, T )|Z |
2(1 − T 2)2

=
(
X1(|Z |

2
− 1), X2(|Z |

2
− 1), X3

|Z |
2, X4

|Z |
2, T |Z |

2)(1 − T 2)2.

Now, for comparison, we find ∇1E1 from Proposition 3.10 when δ = 1:

∇1E1 = −E3(1 − T 2) − E4T |Z |
2(1 − T 2)

= −(X1
|W |

2, X2
|W |

2,−X3
|Z |

2,−X4
|Z |

2, 0)(1 − T 2)

− (X1T , X2T , X3T , X4T , T 2
− 1)T |Z |

2(1 − T 2),
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and, by using |W |
2
+ T 2

|Z |
2

= 1 − |Z |
2
− T 2

+ T 2
|Z |

2
= (1 − T 2)(1 − |Z |

2), one obtains

∇1E1 = −
(
X1(1 − |Z |

2), X2(1 − |Z |
2),−X3

|Z |
2,−X4

|Z |
2,−T |Z |

2)(1 − T 2)2

which equals ∇̄1E1. The remaining computations are done in an analogous way. □

4. The Chern–Gauss–Bonnet theorem

4.1. The trace

Just as for the noncommutative torus, one may introduce a linear functional on S4θ corresponding to integration on the
classical manifold. Namely, for a given basis element eI with I = (j, k, l,m, ϵ) (in the notation of Section 3.1) one defines a
linear map φ : S4θ → C∞(S4) via

φ(eI ) = ei(j−k)ξ1
(
cosϕ cosψ

)j+kei(l−m)ξ2
(
sinϕ cosψ

)l+m(sinψ)ϵ

and

τ (eI ) =

∫ 2π

0
dξ1

∫ 2π

0
dξ2

∫ π/2

−π/2
dψ

∫ π/2

0
dϕ φ(eI ) sinϕ cosϕcos3ψ,

which are extended to S4θ as linear maps (cp. [24] for a similar approach in the unperturbed case). The volume element of
the round metric g0 on S4 is given by sinϕ cosϕcos3ψ dξ1dξ2dψdϕ and for the perturbed metric δg0 one obtains

dV = δ2 sinϕ cosϕcos3ψ dξ1dξ2dψdϕ.

In order to reflect the fact that one would like to integrate with respect to the perturbed metric, we introduce

τδ(a) = τ
(
δaδ

)
.

Let us note a few properties of the linear functional τδ . We start with the following lemma:

Lemma 4.1. Assume that θ ̸∈ Q and δ ∈ Z(S4θ ). If eI ̸∈ Z(S4θ ) then τδ(e
I ) = 0.

Proof. Let us start by considering τδ(eI ) when I = (j, k, l,m, 0). Assuming that δ ∈ Z(S4θ ) and θ ̸∈ Q, one may write

δ2 =

∑
i1i2ϵ

ai1i2ϵ(|Z |
2)i1 (|W |

2)i2T ϵ

by Proposition 3.3, and

τδ(eI ) =

∑
i1 i2ϵ

ai1 i2ϵτ
(
e(j,k,l,m,0)(|Z |

2)i1 (|W |
2)i2T ϵ

)
=

∑
i1 i2ϵ

ai1 i2ϵτ
(
e(j+i1,k+i1,l+i2,m+i2,ϵ)

)
.

Since ∫ 2π

0
dξ1

∫ 2π

0
dξ2eik1ξ1eik2ξ2 =

{
4π2 if k1 = k2 = 0,
0 otherwise,

we conclude that τδ(e(j,k,l,m,0)) = 0 if j ̸= k or l ̸= m, which is equivalent to e(j,k,l,m,0) ̸∈ Z(S4θ ). Similarly, for I = (j, k, l,m, 1),
terms proportional to ai1 i21 are of the form

ai1i21τ
(
e(j+i1,k+i1,l+i2,m+i2,0) − e(j+i1+1,k+i1+1,l+i2,m+i2,0) − e(j+i1,k+i1,l+i2+1,m+i2+1,0)

)
which, by using the same argument as above, implies that τδ(e(j,k,l,m,1)) = 0 if j ̸= k or l ̸= m. □

Proposition 4.2. If δ ∈ Z(S4θ ) and θ ̸∈ Q, then τδ satisfies

(1) τδ([a, b]) = 0,
(2) τδ(a∗) = τδ(a),

for all a, b ∈ S4θ .

Proof. To prove (1), we show that τδ([eI1 , eI2 ]) = 0. By using Lemma 3.1 one obtains

τδ
(
[eI1 , eI2 ]

)
=

(
q(l1−m1)(j2−k2) − q(l2−m2)(j1−k1)

)
τδ

(
eI1+I2

)
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if ϵ1 + ϵ2 ≤ 1, and

τδ([eI1 , eI2 ]) =

(
q(l1−m1)(j2−k2) − q(l2−m2)(j1−k1)

)
×

(
e(Î1+Î2,0) − e(Î1+Î2+1̂Z ,0) − e(Î1+Î2+1̂W ,0)

)
(4.1)

if ϵ1 + ϵ2 = 2. From Lemma 4.1 it follows that if j1 + j2 ̸= k1 + k2 or l1 + l2 ̸= m1 + m2 then τδ([eI1 , eI2 ]) = 0. On the other
hand, if j1 + j2 = k1 + k2 and l1 + l2 = m1 + m2 then

(l1 − m1)(j2 − k2) = (l2 − m2)(j1 − k1)

which gives τδ([eI1 , eI2 ]) = 0 from (4.1).
For (2), we again consider a =

∑
IaIe

I and find

τδ(a∗) =

∑
I

aIτδ
(
(eI )∗

)
=

∑
I

q(j−k)(l−m)aIτδ(eI ).

Since τδ(eI ) = 0 if j ̸= k or l ̸= m (by Lemma 4.1), the above sum equals

τδ(a∗) =

∑
I

aIτδ(eI ) = τδ(a)

using that τδ(eI ) ∈ Rwhen j = k and l = m. □

For the forthcoming discussion of the Chern–Gauss–Bonnet theorem, we extend τδ to the commutative subalgebra
Zloc ⊆ S4θ,loc given by

Zloc = C
⟨
1, |Z |

2, |Z |
−2, |W |

2, |W |
−2, T , (1 − T 2)−1, (1 + T 2)−1⟩ ,

by defining a homomorphism (of commutative ∗-algebras) φ0 : Zloc → C∞(U0) as

φ0(|Z |
2) = cos2(ϕ)cos2(ψ) φ0(|W |

2) = sin2(ϕ)cos2(ψ)
φ0(1) = 1 φ0(T ) = sin(ψ)

as well as

φ0
(
(1 − T 2)−1)

=
1

cos2(ψ)
=

1
φ0(1 − T 2)

φ0
(
(1 + T 2)−1)

=
1

1 + sin2(ψ)
=

1
φ0(1 + T 2)

φ0
(
|Z |

−2)
=

1
cos2(ϕ)cos2(ψ)

=
1

φ0(|Z |
2)

φ0
(
|W |

−2)
=

1
sin2(ϕ)cos2(ψ)

=
1

φ0(|W |
2)
.

For φ0 to be well-defined, one needs to check that the above definition is compatible with the relations in Zloc. The only
nontrivial relation to check is

φ0(|Z |
2
+ |W |

2
+ T 2

− 1) = cos2(ϕ)cos2(ψ) + sin2(ϕ)cos2(ψ) + sin2(ψ) − 1

= cos2(ψ) + sin2(ψ) − 1 = 0,

which shows that φ0 is indeed well-defined. Note that φ0 coincides with φ on Z(S4θ ). Finally, for δ ∈ Zloc, we define

τδ,loc(a) =

∫ 2π

0
dξ1

∫ 2π

0
dξ2

∫ π/2

−π/2
dψ

∫ π/2

0
dϕ φ0(a)φ0(δ2) cos3ψ sinϕ cosϕ,

for a ∈ Zloc, whenever the above integral is convergent. (For instance, the integral does not exists when a = (1 − T 2)−2.)

4.2. The Chern–Gauss–Bonnet theorem

For a closed surfaceΣ , theGauss–Bonnet theoremstates that the integral of theGaussian curvature overΣ is proportional
to the Euler characteristic ofΣ . This provides an important link between topology and Riemannian geometry. In particular,
since the Euler characteristic is independent of any metric tensor, the integral gives the same value if we perturb the metric.
This theoremhas been generalized to closed even dimensional Riemannianmanifolds, where the scalar curvature is replaced
by the Pfaffian of the curvature form. In case of a closed four dimensional manifold M , the Chern–Gauss–Bonnet theorem
states that

χ (M) =
1

32π2

∫
M

(
RabcdRabcd − 4RicabRicab + S2

)
dµ (4.2)
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where Rabcd is the Riemann curvature tensor, Ricab is the Ricci curvature, S denotes the scalar curvature and χ (M) is the Euler
characteristic of M . (Recall that χ (S4) = 2.) In this section, we will show that there exists an analogue of the Chern–Gauss–
Bonnet theorem for the pseudo-Riemannian calculus of S4θ we have developed. Our approach is based on the fact that all
coefficients of the curvature tensor lie in the commutative subalgebra Zloc, which allows us to compute directly the Pfaffian
of the curvature form.

Let us consider a metric perturbation δ ∈ Zloc that is a polynomial in T , and such that δ is invertible in Zloc. It follows that
α1 = α2 = α3 = 0 (in the notation of Section 3.4), since ∂1T = ∂2T = ∂3T = 0. Moreover,

∂4δ = δ′(T )(∂4T )δ−1δ = −δ′(T )(1 − T 2)δ−1δ

where δ′(T ) denotes the (formal) derivative of the polynomial δ(T ) with respect to T , which implies that

α ≡ α4 = −
1
2
(1 − T 2)δ′δ−1.

An example of such a perturbation is given by δ = (1 + T 2)N which gives

α = −NT (1 − T 2)(1 + T 2)−1.

Moreover, byα′ we shall denote the (formal) derivative ofα(T ) with respect to T . For easy reference, let us recall the formulas
from Proposition 3.10 in the situation where α1 = α2 = α3 = 0:

∇1E1 = −E3(1 − T 2) − E4(α + T )|Z |
2(1 − T 2)

∇2E2 = E3(1 − T 2) − E4(α + T )|W |
2(1 − T 2)

∇3E3 = E3(|W |
2
− |Z |

2) − E4(α + T )|Z |
2
|W |

2

∇4E4 = E4(α + T )
∇1E2 = ∇2E1 = 0 ∇1E3 = ∇3E1 = E1|W |

2

∇1E4 = E1(α + T ) ∇4E1 = E1(α + 3T )

∇2E3 = −E2|Z |
2

∇3E2 = −E2|Z |
2

∇2E4 = E2(α + T ) ∇4E2 = E2(α + 3T )

∇3E4 = E3(α + T ) ∇4E3 = E3(α + 3T ).

It is now straight-forward to compute the curvature:

R(∂1, ∂2)E1 = −E2
(
1 − (α + T )2

)
|Z |

2(1 − T 2)

R(∂1, ∂2)E2 = E1
(
1 − (α + T )2

)
|W |

2(1 − T 2)
R(∂1, ∂2)E3 = 0 R(∂1, ∂2)E4 = 0

R(∂1, ∂3)E1 = −E3
(
1 − (α + T )2

)
|Z |

2(1 − T 2)

R(∂1, ∂3)E3 = E1
(
1 − (α + T )2

)
|Z |

2
|W |

2

R(∂1, ∂3)E2 = 0 R(∂1, ∂3)E4 = 0

R(∂1, ∂4)E1 = −E4
(
1 + α′

)
|Z |

2(1 − T 2)2

R(∂1, ∂4)E4 = E1(1 + α′)(1 − T 2)

R(∂1, ∂4)E2 = 0 R(∂1, ∂4)E3 = 0

R(∂2, ∂3)E2 = −E3
(
1 − (α + T )2

)
|W |

2(1 − T 2)

R(∂2, ∂3)E3 = E2
(
1 − (α + T )2

)
|Z |

2
|W |

2

R(∂2, ∂3)E1 = 0 R(∂2, ∂3)E4 = 0

R(∂2, ∂4)E2 = −E4(1 + α′)|W |
2(1 − T 2)2

R(∂2, ∂4)E4 = E2(1 + α′)(1 − T 2)

R(∂2, ∂4)E1 = 0 R(∂2, ∂4)E3 = 0

R(∂3, ∂4)E3 = −E4(1 + α′)|Z |
2
|W |

2(1 − T 2)

R(∂3, ∂4)E4 = E3(1 + α′)(1 − T 2)

R(∂3, ∂4)E1 = 0 R(∂3, ∂4)E2 = 0
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and the only non-zero curvature components Rabpq = hδ(Ea, R(∂p, ∂q)Eb) turn out to be

R1212 = δ
(
1 − (α + T )2

)
|Z |

2
|W |

2(1 − T 2)3

R1313 = δ
(
1 − (α + T )2

)
|Z |

4
|W |

2(1 − T 2)2

R1414 = δ(1 + α′)|Z |
2(1 − T 2)3

R2323 = δ
(
1 − (α + T )2

)
|Z |

2
|W |

4(1 − T 2)2

R2424 = δ(1 + α′)|W |
2(1 − T 2)3

R3434 = δ(1 + α′)|Z |
2
|W |

2(1 − T 2)2.

In the local algebra Zloc, the metric hδ is invertible since δ is invertible. Moreover, every component of the metric, as well as
of the curvature, is central, which implies that there exists a naive analogue of the integrand in (4.2). Setting

Rabcd
= (hδ)ap(hδ)bq(hδ)cr (hδ)dsRpqrs

Ricab = (hδ)pqRapbq

Ricab = (hδ)ap(hδ)bqRicpq
S = (hδ)abRicab

one finds that

RabcdRabcd − 4RicabRicab + S2 = 24
(
1 − (α + T )2

)
(1 + α′)(1 − T 2)−1δ−2. (4.3)

Theorem 4.3. Let δ(T ) be an invertible polynomial in Zloc and define α via the relation ∂4δ = 2αδ. If

φ0(α)
⏐⏐
ψ=

π
2

= φ0(α)
⏐⏐
ψ=−

π
2

= 0,

then

χ (S4θ ) =
1

32π2 τδ,loc
(
RabcdRabcd − 4RicabRicab + S2

)
= 2.

Proof. Since δ is a polynomial in T and ∂4T = T 2
− 1, one can express α in terms of T and, by a slight abuse of notation, we

let α(t) be such that φ0(α) = α(sinψ). In this notation, the assumption on φ0(α) may be stated as α(1) = α(−1) = 0.
From the definition of τδ,loc it follows that

χ =
1

32π2 τδ,loc
(
RabcdRabcd − 4RicabRicab + S2

)
= Iψ

∫ 2π

0
dξ1

∫ 2π

0
dξ2

∫ π
2

0
sinϕ cosϕdϕ,

where

Iψ =
24

32π2

∫ π
2

−
π
2

(
1 − (α(sinψ) + sinψ)2

)
(1 + α′(sinψ)) cosψdψ.

Substituting t = sinψ gives

Iψ =
24

32π2

∫ 1

−1

(
1 − (α(t) + t)2

)
(1 + α′(t))dt,

which can easily be integrated to

Iψ =
24

32π2

[
α(t) + t −

1
3

(
α(t) + t

)3]1

−1
=

24
32π2

(
1 −

1
3

+ 1 −
1
3

)
=

1
π2 ,

since α(1) = α(−1) = 0. Finally, one obtains

χ = Iψ

∫ 2π

0
dξ1

∫ 2π

0
dξ2

∫ π
2

0
sinϕ cosϕdϕ

=
1
π2

∫ 2π

0
dξ1

∫ 2π

0
dξ2

∫ π
2

0
sinϕ cosϕdϕ =

1
π2 · 4π2

·
1
2

= 2,

which proves the statement. □

Remark 4.4. The condition that φ0(α) = 0 at ψ = ±π/2, in Theorem 4.3, can be understood as a reminiscence of the fact
that δ has to be the restriction (to U0) of a non-zero function f ∈ C∞(S4). Namely, if δ approaches zero at ψ = ±π/2 then
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f has to be zero at these boundary points. The purpose of the condition in Theorem 4.3 is to avoid this situation. Let us be a
little more precise in the case when δ(t) (with t = sinψ) is a polynomial. One finds that

α =
∂4δ(sinψ)
2δ(sinψ)

= − cosψ
∂ψδ(sinψ)
2δ(sinψ)

= −
1
2
cos2ψ

δ′(sinψ)
δ(sinψ)

= −
1
2
(1 − t2)

δ′(t)
δ(t)

.

Clearly, if δ(±1) ̸= 0 then α(±1) = 0. Conversely, assume that δ(1) = 0. Then, one may write δ(t) = (1 − t)np(t) with
p(1) ̸= 0 (and n > 0); it follows that

α = −
1
2
(1 − t2)

p′(t)
p(t)

+
1
2
n(1 + t)

which implies α(1) = n > 0. The case when δ(−1) = 0 is treated analogously.

In this paper, we have preferred to stay in the purely algebraic regime, and have thus not considered any smooth
completion of S4θ , in order to stress the point that our results do not depend on the analytic structure. However, we expect
that Theorem 4.3 holds true even for more general perturbations in a potentially larger algebra. For instance, if δ = eλT
exists for all λ ∈ R, one obtains α =

λ
2 (T

2
− 1) which clearly fulfills the conditions of Theorem 4.3. Moreover, one may

consider perturbations given, not only as functions of T , but as more general elements of Zloc. Although our approach to the
Chern–Gauss–Bonnet theoremmay be too naive to have any impact on the general problem, we hope that our investigations
will contribute to the growing understanding of Riemannian curvature in noncommutative geometry.
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