期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:134
Conformal automorphisms of algebraic surfaces and algebraic curves in the complex projective space
Article
Ballico, Edoardo1 
[1] Univ Trento, Dept Math, I-38123 Povo, TN, Italy
关键词: Conformal group;    Conformal automorphism;    Complex projective space;    Algebraic surface;    Algebraic curve;   
DOI  :  10.1016/j.geomphys.2018.08.013
来源: Elsevier
PDF
【 摘 要 】

We study the automorphism group of curves and surfaces in CP3 with respect to the conformal group, i.e. the group of all A is an element of PGL(4, C) commuting with the anti-holomorphic involution j defined by j((z(0) : z(1) : z(2) : z(3))) = (-(z) over bar (1) : (z) over bar (0) : (z) over bar (3) : -(z) over bar (2)). For some singular surfaces we check when this group is finite. Among the singular surfaces we handle there are: (1) certain cones; (2) surfaces X containing no line and with j(X) not equal X; (3) surfaces containing only finitely many, k, twistor lines with k >= 3. In many cases the proofs need results on conformal automorphisms of singular curves. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2018_08_013.pdf 339KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次