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1. Introduction

Let G(2, 4) denote the Grassmannian of all 2-dimensional linear subspaces of C#, i.e. the Grassmannian of all 1-dimension
(projective) linear subspace of CPP3. The linear group GL(4, C) acts linearly on C* and hence it induces a holomorphic action on
G(2, 4). The quotient group PGL(4, C) = GL(4, C)/C*Id4x4 acts effectively and 2-transitively on CP3. Let H = R+Ri+Rj-+Rk
be the non-commutative field of quaternions. Identify C* with H?. Left multiplication by j induces an R-linear mapj : C* —
C* given by the formula

J(20, 21, 22, 23) = (=21, Zo, —2Z3, Z2). (1)

[1-9]. By the formula (1) we have j2 = —Idc4. The mapj : C* — C* induces amapj : CP?> — CP3. Formula (1) immediately
shows thatj : CP> — CP? is a fixed-point-free anti-holomorphic involution. Thus for each set S € CP? we have defined
the set j(S). We always have j(j(S)) = S. Using the explicit formula for the map j it is easy to check that if S is a line, then
j(8) is a line. Since j(j(S)) = S, we see that j induces an anti-holomorphic involution G(2, 4) — G(2, 4) [8, Section 2]. Its
fixed points are called twistor lines, i.e. a line L is a twistor line if and only if j(L) = L. Since G(2, 4) is compact and the map
G(2,4) — G(2, 4) is an anti-holomorphic involution, the set of all twistor lines is a compact 4-dimensional manifold. This
manifold is diffeomorphic to S4; more precisely this manifold is identified with HP! [8, Section 2]. Identifying C* with H?
the quotient map map H? \ {0} — HP' factors through the surjection C* \ {0} — CP? and hence it induces a submersion
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7 : CP? — HP! called the twistor fibration. The fibers of 7 are exactly the twistor lines. Let G be the conformal group of 54,
i.e. the closed subgroup of GL(4, C) formed by the matrices A which commute with j, i.e. by all matrices

aq —az b] —Bz
a @ by b
o -G d —d
o ¢ d d

. (2)

where all the entries are complex numbers (see [3, Section 2]). The group G acts on CP? (as any subgroup of GL(4, C)), but
this action is not effective: any non-zero multiple of the identity matrix Id44 acts as the identity on CP3. To get an effective
action on CP? we use the groups G := G/R*Id44 and PGL(4, C) = GL(4, C)/C*Id4,.4. The groups G and G are real Lie groups.
For any closed set X C CP? the stabilizer Stabg(X) of X is the set of allg € G such that g(X) = X.IfX contains at least 5 points
no 4 of them coplanar, then any g € PGL(4, C) fixing each point of X is the identity. Thus in this case Stabg(X) is the set of all
conformal symmetries of X, up to the quotient G — G. We will say that Stabg(X) is the conformal automorphism group of
X. Since Stabg(X) C Stabpgy4,c)(X), the group Stabg(X) is finite if Stabpgi(a,c)(X) is finite. In particular Stabg(X) is finite if X
is a smooth surface of degree d > 2 (Remark 4). Since the conformal automorphism group of a smooth quadric surface was
computed in [7, Section 4], for smooth surfaces the only interesting open question is to describe the maximal integer oy of
all |Stabg(X)| for X a smooth surface of degree d and to compute the structure of the group Stabg(X) when its cardinality
is high (e.g. to give an upper bound for the order of its cyclic subgroups). We have no non-trivial result on this problem.
We just point out that as in the refinements of Riemann-Hurwitz upper bound for the biholomorphic automorphisms of
complex curves of genus at least 2 it may be useful to consider separately cyclic subgroups and abelian subgroup and then
apply a classical result of C. Jordan (Remark 1). This strategy was used in [10] to give upper bounds in the case of smooth
hypersurfaces in any complex projective space.
We prove the following result.

Theorem 1. Let X C CP? be an integral degree d > 1 surface containing at least 3 twistor lines, but containing only finitely
many twistor lines. The stabilizer Stabg(X) of X in G is infinite if and only if there 1s an integer t > 0 and a conformal change of
coordinates such that in the new system of coordinates for all monomials z, zf z§ z3” appearing with non-zero coefficient in X we
have kg + k, = t and ki + ks = d — t. Moreover, if Stabg(X) is infinite, its connected component of the identity has finite index,
it is isomorphic to S' as a topological group and its Zariski closure in Stabpgi(4,c)(X) is isomorphic to C* as a complex algebraic
group.

We give examples of surfaces X as Theorem 1 (Example 2). The proof of Theorem 1 shows that, up to a change of
coordinates, these are the only examples.

We recall that in the classification of complex affine algebraic groups a torus is a complex algebraic group isomorphic to
(C*y for some integers s > 1. We prove some results on cones (Proposition 2 and Corollaries 1 and 2) and the following
result.

Theorem 2. Let X C CP3 be an integral surface containing no line and such that j(X) # X. Assume that Stabg(X) is not finite.
Let H be the connected component of the identity of the Zariski closure of Stabg(X) in Stabpgya,cy(X). Then H = C*.

We point out that the assumption that X contains no line implies deg(X) > 4. We collect in Example 1 many examples
of surfaces X with Stabg(X) and with the connected components of the identity of Stabpgi4 c)(X) isomorphic to C*.

In Section 2 we consider the case of curves Y C CP3. For all integers d > 0 and g > 0 such that there is a smooth,
connected and non-degenerate curve Y C CP? with degree d and genus g, let ag.¢ be the maximal cardinality of the integer
|Stabg(Y)| among all smooth, connected and non-degenerate curves Y C CP? with degree d and genus g. We obviously need
d > 3. For a list of all pairs (d, g) which may occur see [11] or [12]. If we drop the assumption that Y is non-degenerate (but
instead of |Stabg(Y)| we use the cardinality of the image of Stabg(Y) in the group Aut(Y)), we call a;‘g the corresponding
integer. The integer o , is defined for all d > 0, but for d = 1,2 it is only defined o ,, while if d > 3 either aéig = o OF
g =(d- 1)(d — 2)/2 by the genus formula for smooth plane curves. For g = 0,1 a priori it may be cxd = +o0, but we
always have ad 1 < 400 ( Lemma 3). To get a good upper bound for the integers oy ¢ one should use a theorem of C. Jordan
to reduce our task to the study of finite abelian subgroups of PGL(r + 1, C) (Remark 1). This theorem was used in [10] for
linear automorphisms of hypersurfaces in any CP". If g > 2 we have aq, < 84(g — 1) (with strict inequality for several g)
by Hurwitz’ upper bound for the automorphism group of a smooth curve of genus g > 2 and the classification of all curves
achieving this bound; notice that for all g there are smooth genus g curves with at least 8(g — 1) automorphisms [13,14]. If
we restrict the curves Y C CP? to smooth and connected curves Y with j(Y) = Y we get the definition of the integers Bdg
and ﬂé.g- However ﬂé,g is defined only for non-degenerate curves, except the case (d, g) = (1, 0) corresponding to the twistor
lines, because j(M) # M for every plane M C CP>. The integer (or 400 for g = 0) Ba g is well-defined if and only if there is
a smooth, connected and non-degenerate curve Y C CP? with degree d and genus g. Since we do not have a description of
all pairs (d, g) for which B4 ¢ is defined we pose the following question.

Question 1. For which pairs (d, g) there is a smooth, connected and non-degenerate curve Y C CP3 with degree d and genus
g withj(Y) = Y? When g > 0 and B4 is defined, what is B4 ¢ /a4 ? For a fixed integer g > 2 what limsup,_, ;. Bag/0%d.g
and liminfy_, {o By g/0tdg are ?
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In many proofs about surfaces we use results on the conformal automorphism group of singular (and often reducible)
curves. Let X C CP? be a reduced curve, i.e. a curve without multiple components, without isolated points and without
embedded points. We allow the case in which X is reducible. It is easy to check that the groups Stabg(X) and Stabpgya,cy(X)
are finite if at least one irreducible component of X is not rational, i.e. its normalization has not genus 0, and it spans CP>
(Lemma 4). When j(X) = X and Stabg(X) is infinite, we get a stronger result (Lemma 5).

The following remark explains the difference (in the holomorphic category) between isomorphisms as abstract complex
compact varieties and automorphisms induced by PGL(4, C). For its use for the projective automorphisms of smooth
hypersurfaces, see [10].

Remark 1. C.Jordan proved that for all integers n > 0 there is an integer f(n) such that every finite group H C GL(n, C) has
an abelian subgroup with index at most f (). Moreover, we may take f(n) = [(v/8n+1)2" —(+/8n—1)2"" | [15, Theorem 9.6].
The optimal f(n) (call it again f(n)) was computed in [ 16, Theorems A and B] together with the classification of the groups
achieving the bound. We have f(2) = f(3) = 60 and f(4) = 7200. For n > 71 we have f(n) = n!.

2. Curves

We first explain why for each closed algebraic subscheme X of CP? there is a natural scheme-structure on the support
of j(X) preserving dimensions, degrees and multiplicities for the irreducible components of X..q and all other projective
invariants of X. This is obvious in the real algebraic (or the real analytic) category, because j is a real algebraic isomorphism,
but we need a proof in the complex algebraic category. We need to find a homogeneous ideal (which will be the homogeneous
ideal of j(X)) associated to the homogeneous ideal of X. For any z € C* and any « = («g, a1, o2, or3) € N* set

2% = 7°2"2%2.
For any @ € N* we write |a| = &g + &1 + & + 3. Consider the complex vector space H(Op3(d)) of all f € Clzo, 21, 22, 23]
homogeneous of degree d. The complex vector space HO(OC]PB(CI)) has dimension (d?). Consider the map] : HO(OWa(d)) —
H%(O¢p3(d)) defined in the following way

HOOes(d) 5 f = ) cuz® = Jf) = ) &z”,

er|=d lor|=d

where 6010,011,:12,&3 = (_1)a0+azza1,ut0,ot3,a2-

Note that j is R-linear and that j*(f) = (—1)/f. For any z € C* we have f(j(z)) = (—1)%j(f)(z). We say that f = ), c,2"
is j-invariant if and only if there is a constant a € C \ {0} such that j(f) = df, i.e. if and only if the map ] fixes the line Cf. If
q=(20:21:2:23) e CP?and f € HO((’)Wz(d)) we have f(q) = 0 if and only if j(f)(j(q)) = 0. The homogeneous ideal of
j(X) is generated by the polynomials j(f) with f a homogeneous polynomial vanishing on X.

Lemma 1. Take g € PGL(4, C), g # Id, and a reduced curve E C CP? such that g(q) = q forall q € E.

(1) IfE spans CP3, then E is a union of 2 disjoint lines.
(2) Ifeither g € G or g(q) = q for all q € j(E), then either E is a twistor line or E U j(E) = L U j(L) with L a non-twistor line.

Proof. The union F of 2 disjoint lines is the only reduced curve spanning CP* and not containing 5 points in linearly general
position, i.e. no 4 of them are coplanar. Thus we get the first assertion of the lemma. Let U be the linear span of E. Since E
contains at least 5 points in linearly general position in U (unless E is a disjoint union of 2 lines, a case we excluded in the
statement) and g(q) = q for all g € E, we have g(q) = q for all ¢ € U. In particular if E spans CP? and E is not the union of 2
disjoint lines, then g is the identity map, a contradiction. Now assume that g is not the identity map and that E is not a line.
We get that U is a plane. If g € G, g commutes with j and hence it fixes each point of the plane j(U). If g ¢ G by assumption
it fixes each point of j(D) and hence of j(U). Since j(U) # U, g fixes pointwise a set spanning CP> and then g is the identity:
a contradiction. O

Lemma 2. We have o} ; = B}, = +o0.

Proof. It is sufficient to prove that /34’0 = +o0. All the twistor lines are conformally equivalent. Take the twistor line
L = {z, = z3 = 0}. Use the images in PGL(4, C) of the matrices A = (a;;) with ay; = a33 = 1 and a;; = O if eitheri = 0,1 and
j=23o0ri=2andj=0,1,30ri=3andj=0,1,2. O

Lemma 3. LetY C CP? be an integral and non-degenerate degree d > 4 curve such that its normalization is an elliptic curve.
Then |StaprL(4,c)(Y)| < 24,

Proof. Let v : D — Y be the normalization map. Set £ := v*(Oy(1)). By assumption D is a smooth elliptic curve and
L is a degree d line bundle. Let u : D — CP%! be the linearly normal embedding of D induced by the complete linear
system |£|. Every g € Stabpgy4,c)(Y) induces g’ € PGL(d, C) such that g’(u(D)) = u(D) and the map g — g’ is injective. Call
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H C PGL(d — 1, C) the image of Stabpgi(4,c)(D) by the map g +— g’. Let S C u(D) be the set of all flexes of u(D), i.e. the set of
all ¢ € u(D) such that the hyperplane of CPY~! has order of contact > d with u(D) at q. Since deg(u(D)) = d, S is the set of all
u(o), 0 € D, such that do € |£|. Thus |S| = 2¢. Since u(D) is a non-degenerate and of degree d, any d + 1 points of u(D) span
CP?1. We get that any h € PGL(d, C) with h(q) = q for all g € S is the identity. Since the notion of flex is a projective one,
we have f(S) = S for every f € PGL(d, C) such that f(u(D)) = u(D). Thus |H| < 24. O

Lemma 4. Let X C CP? be a reduced curve spanning CP? such that at least one irreducible component E of X is not rational,
i.e. its normalization has no genus 0. Then Stabg(X) is finite. If E is non-degenerate, then Stabpgya,cy(X) is finite.

Proof. First assume that E is non-degenerate. In this case it is sufficient to prove that the group Stabpgya,cy(X) is finite.
Assume that this is not the case. Since PGL(4, C) is a complex algebraic group, its connected component H of the identity
has positive dimension. We claim that there is a subgroup H’ of H isomorphic either to the multiplicative group C* or to the
additive group C, (i.e. C with the addition as group multiplication). We recall that either H = C* and there is g € SL(4, C)
such that gHg ! is diagonal (the semisimple case) or H = C, and there is g € SL(4, C) such that gHg ' is in upper triangular
forms with 1’s in the diagonal (the unipotent case); see [17, page 261] or [ 18, 11.1]) for the existence of a Borel subgroup, so
that H is solvable, [ 17, Cor. 3 at page 110] for the fact that H is abelian (being minimal and contained in a solvable connected
group), [17, Theorem 4.7 at page 156] or [19, Theorem 15.5] for the decomposition into a multiplicative and a unipotent
part for commutative groups and then for the existence of g see [17, Theorem at page 158] for the unipotent case and
[17, page 155] for the multiplicative case. Since H’' is connected and X has only finitely many irreducible components, H’
sends each irreducible component into itself. Let E be an irreducible component of X which is not rational (if any) and let
E’ — E the normalization map. The action of H' on E lift to an action of H' on E’ by the universal property of the normalization
(or because E’ and E have the same field C(E’) of rational functions and any C-automorphism of the field C(E’) induces an
automorphism of the smooth and connected projective curve E’). If E’ has genus > 2, then Aut(E’) is finite and hence the
connected group H’ fixes each point of E’ and hence of E, contradicting Lemma 1. If E” is an elliptic curve we use Lemma 3.

Now assume that E is degenerate and that Stabg(X) is infinite. Since E is not rational, it is not a line and thus E spans a
plane M. Since E is not a line, Lemma 1 shows that the image of Gg in Aut(E) is infinite. This is false if the normalization of E
has genus > 2, because Aut(E) < 84(g — 1) by Hurwitz’ bound for the automorphisms of compact Riemann surfaces [13,14].
If the normalization of E is an elliptic curve we use Lemma 3. O

Remark 2. Let D C CP? be an integral and non-degenerate curve such that the algebraic group Stabpgy4,c)(D) is not finite,
i.e. dim Stabpgi(a,cy(D) > O and letu : D" — D be the normalization map. Let H C Stabpgi,cy(D) be a minimal connected
subgroup. Either H = C* (the multiplicative group) or H = C with the addition as its group structure (the additive group)
(see the quotations in the proof of Lemma 4). Since H is a one-dimensional affine connected algebraic group acting non-
trivially on the smooth and connected compact complex curve D', H acts on D’ with an open orbit Hb, b € D', and hence D’
has genus 0, i.e. D is rational. We have |D’ \ Hb| = 2 in the multiplicative case, because CP! \ S is hyperbolic for every finite
set S with |S| > 3, while C and C* are not even homeomorphic. For the same reasons we have |D’' \ Hb| = 1 in the additive
case. Thus (setting a := u(b)) we have |D \ Da| < 2 in the multiplicative case and |D \ Du| < 1 in the additive case. The orbit
Ha is obviously contained in the smooth part of D. Note that |D \ Da| = 2 if and only if H is multiplicative and u is injective.

Lemma 5. Let D C CP3 be an integral and non-degenerate curve such that Stabg(D) is infinite and j(D) = D. Letu : D' — D
denote the normalization map. Fix a minimal non-trivial and connected subgroup Gy of Stabg(D) and call H C Stabg(D) the
Zariski closure of Go. Then H = C* and there are a smooth a € D, b € D' with u(b) = a such that Hb = H, Ha = H,
D’ \ Hb| = |D \ Ha| = 2 and the 2 points of D \ Ha are interchanged by j.

Proof. We know by Example 2 that D is rational and that either H' = C* or H' = C with the additive structure. In each of
these two cases we distinguish the possibilities for |D \ Da| and |D’ \ Db|; we exclude the case H = C, because H is a Zariski
closure of a subgroup of the conformal group and hence j permutes the set D \ Da (note that j has no fixed point). O

Remark 3. LetA C CP? be a complete intersection curve, say the complete intersection of a surface of degree x and a surface
of degree y; we allow the case in which A has multiple components. Set B := A.q. We have an exact sequence

0 — Ocp3(—X —y) = Ocp3(—X) @ Ocp3(—y) > Zp — 0 (3)

Since hi{(CP?, Ogps(z)) = 0 fori = 1,2 and all z € Z, formula (3) implies h'(CP3, 7,) = 0. Thus h%(A, ©4) = 1. Hence B is
connected.

Proposition 1. For infinitely many integers d there is an integral and non-degenerate degree d curve Y C CP? such that the
connected component H of the identity of Stabpcya,c)(Y) is isomorphic to C* and its intersection with G is isomorphic to ST (resp.
R*). In the former case Stabg(Y) has finite cyclic subgroups of any order. In the latter case G N H has only {—1, 1} as its element
with finite order.
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Proof. Take the maximal torus D = (C*)* of GL(4, C) formed by the diagonal matrices. Call ¥, : C* — D,h = 0, 1,2, 3,
the homomorphism sending z € C* to the diagonal matrix A = (a;) with a; = 0ifi # j, a; = 1ifi # hand ap, = z. For
any (ng, ny, nz, n3) € Z* we have a homomorphism ¢ = ¥,°y, " ¥,2¢3> : C* — (C*)*.1fny = —ng and n3 = —n,, then
¢(z) € Gforallz € S.1fng = ny and n, = n3, then ¢(z) € G for all z € R*. In both cases we take n3 = 1, call Hy, the
corresponding image and take as rational curve the H,, -orbits of general points of CP3. O

3. Algebraic surfaces

Remark 4. For any integer d > 4 the group Stabpgy4, c)(X) is the full group of all biholomorphic automorphisms of X
[20, Theorem 2], it is always finite and it is trivial for a general degree d surface X C CP? [20,21]. By [22] for every integer
d > 3 there is a smooth degree d surface X defined over R and with trivial Stabpgy(a,cy(X).

Example 1. Fix any integral and non-degenerate curve Y C CP? such that the group Stabpgy4.c)(Y) is finite. Fix a subgroup
H C PGL(4, C)such that H = C* and H NG has positive dimension. For instance we may take as H the elements of PGL(4, C)
induced by the diagonal matrices A = (a;;) such that a; = O foralli # j, a, = a33 = 1and agp = a1 # 0; in this case
H NG = R* because H N G is induced by the matrices with ay; = dgo = dgo. Taking H induced by the matrices A = (a;)
witha; = Oforalli # j,ayp = a3 = 1and a;; = agol we get an example with H NG = S'. Let now X C CP? be
the closure of the orbit of Y by the action of H. X is an integral and non-degenerate surface. Since H C Stabpgy4,¢)(X), we
have H NG C Stabg(X). Conversely, take any integral and non-degenerate surface such that H C Stabpgy4 ¢y(X) (and hence
H NG C Stabg(X)). Let Y be the complete intersection of X with a general surface of high degree. The construction just
explained gives the surface X, because for a general q € Y the H-orbit Hq is contained in X.

The following result gives a class of integral but singular surfaces X for which Stabg (X) is much smaller than Stabpgi(4,¢)(X).
For smooth quadrics see the classification in [7].

Proposition 2. Let X C CP? be an integral cone of degree d > 1.

(a) There is a subgroup H C Stabpgya cy(X) such that H = C* and H N G is the identity.

(b) Assume d > 3 and call o the vertex of X and R the twistor line of CP? containing o. Take a plane M C CP3? witho ¢ M and
setY := X N M. Let Lin(Y, 0’) be the set of all automorphisms of Y induced by a linear automorphism of M fixing o’. If Lin(Y, o’)
is finite, then Stabg(X) is finite.

Proof. Since d > 1and X is integral, the vertex of X is a unique point, o. Since G acts transitively on CP3, we may assume
0 =(1:0:0: 0)In this system of homogeneous coordinates we have R = {z; = z3 = 0} and X = {f(zq, 23, z3) = 0}
with f(z1, 2, z3) a degree d homogeneous polynomial. Thus Stabpgy4,cy(X) contains the images in PGL(4, C) of all matrices
A = (az) witha; = 0foralli # j, a;1 = ay» = as3 = 1and agy € C*. These images form a subgroup H = C*. By (2) we see
that A € Gifand only if agg = 1, i.e. A = Id44, concluding the proof of part (a).

Now we prove part (b). Take A = (a;) € G inducing an element of Stabg(X). Since o is the unique vertex of X, (1, 0, 0, 0)
is an eigenvector of A. Thus ag; = ap; = ap3 = 0. Since A € G, formula (2) gives a;; = ago and a;p = a;; = a;3 = 0.
All sections of X by planes not containing o are irreducible and projectively equivalent. Thus it is sufficient to prove part (b)
when M = {zg = 0}and so o’ = (0 : 1: 0 : 0). With this assumption the 3 x 3 submatrix B of A corresponding to the last 3
rows and columns induces an element of Lin(Y, o’). Thus we only have finitely many possible B’s. By (2) we also have finitely
many possibilities for ap, = a3 and for aps = —a,. O

Corollary 1. Let X be an integral cone of degree d > 4 with the vertex as its only singular point. Then Stabg(X) is finite.

Proof. With the set-up of Proposition 2 Y is a smooth plane curve of degree d > 4. Since Y has genusg = (d — 1)(d — 2)/2,
it has only finitely many automorphisms. O

Corollary 2. Let X C CP? be the general integral cone of degree d > 4. Then Stabg(X) = {Id}.
Proof. Use that a general plane curve of degree d > 4 has no holomorphic automorphism. 0O

Proof of Theorem 1. Every linear algebraic group has only finitely many connected components. Thus dimH > 0 and
H N Stabg(X) is infinite. Let L, R, D be 3 of the twistor lines of X. Every conformal transformation sends a twistor line into
a twistor line. Since X contains only finitely many twistor lines, there is a subgroup G; of finite index of Stabg(X) such
that g(L) = L, g(R) = R and g(D) = 0. Note that H is the connected component of the Zariski closure in Stabpgy,c)(X)
of G;. Since G1 C Stabpg(a,c)(L) N Stabpgra,cy(R) N Stabpei(a,c)(D) and the latter is a closed subgroup of PGL(4, C), we have
H C Stabpgy(a,c)(L)NStabpgia cy(R) N Stabpgr4,c)(D). Since G acts 2-transitively on $4, up to a conformal transformation (i.e. up
to take h(X) instead of X for some h € G), we may assume L = {zp = z; = 0}and R = {z; = z3 = 0}. Take any g € G,
and call A = (a;) € GL(4,C),0 <i < 3,0 <j < 3, a matrix representing g. Since g(L) = 0, we have a; = 0 fori = 0,1
and j = 2,3. Since g(R) = R, we have a; = O fori = 2,3 and j = 0,1. Now we use D. Since L, D, R are twistor lines, they are
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disjoint. Thus there is a unique quadric surface Q containing L U RU D and this quadric is smooth. Since Q contains 3 twistor
lines, the conformal classification of smooth quadric surfaces gives that Q is a real smooth quadric [7, Theorem 1.11]. Since
Gy send LURU D into itself and Q is the unique quadric containing LURU D, we have G; C Stabgy4,¢)(Q). Call E the scheme-
theoretic intersection of X and Q and F the set-theoretic intersection. Since X and Q are integral and X # Q, E is a complete
intersection curve of degree 2d and F is a curve, union of all the irreducible components of E, without their multiplicities.
Every complete intersection curve is connected (Remark 3). Thus F is connected. Call |Oq(1, 0)| and |Oq(0, 1)| the 2 rulings
of Q, with L € |Oq(1, 0)] and hence D, R € |Oq(1, 0)|. E C Q is a curve of bidegree (d, d) and hence F € |Oqy(a, b)| for some
a,batmostd. Since LURUD C F,we havea > 3. Write F = (LURU D) U K with K € |Oq(a, b)|. Since g stabilizes X,
Q and L U R U D, it stabilizes E and hence F. Thus g stabilizes K. Since F is connected and without multiple components,
St :=LNK,Sg .= RNK and Sp := DNK are finite non-empty sets and they are stabilized by each element of G,. Fixo € LNK,
g € RNK and ¢ € D N K. The points o, q and g’ are distinct, because any 2 twistor lines are disjoint. Up to a conformal
transformation involving only zo and z; (resp. z; and z3) we may assume o = (1:0:0: 0)(resp.q = (0: 0 : 1: 0)). Note
thatjlo) = (0:1:0:0)andj(q) = (0 : 0 : 0 : 1). Since every conformal transformation commutes with j and G fixes
the points o and g, each element of G; fixes the points o, j(0), ¢ and j(q). Thus A is a diagonal matrix and o, j(0), g and j(q)
represent linearly independent eigenvectors of A. Using L and D we get that q' and j(q') are different eigenvectors. Hence A
has some multiple eigenvalue. Since g € G, we have a;; = ago and as3 = a,;. We need to prove that a; = ago for all i and
hence that A is a real multiple of the identity Id4.4, unless X is as in the exceptional case. Since A € G, formula (2) shows that
it is sufficient to prove that A has an eigenvalue with eigenspace of dimension at least 3. Since LN'D = RN D = @ neither q'
nor j(q') are in L U R and hence at least one of the eigenvalues for o or j(0) must be equal to an eigenvalue of ¢’ and j(q').

Suppose for instance that any non-zero vector associated to g’ is in the eigenspace spanned by o and g (we may reduce
to this case exchanging the names of g and j(q) and of ¢’ and j(q')). We get agy = a5, and so ay; = dgp = Gy = as3. We get
that the Zariski closure H' in GL(4, C) of this set of matrices is the set of all diagonal matrices B = (b;) with by; = b33 and
boo = baa.

Let f € Clzg, z1, 22, z3] be an equation of X in the new system of coordinates witho =(1:0:0:0),j(o)=(0:1:0:0),
q=(0:0:1:0)andj(g) =(0:0:0: 1).Let S be the set of all monomials of f appearing with non-zero coefficient. The

. : ki ky K3 o Koy —ki+ks ko ki ko K . .
matrix A sends the monomial z,°z}" z,225? to ag 2dgh 792,02, 2,2 25> Note that ky + k3 = d — ko — k;. Thus Af is a multiple

of f for every agp € C* ifand only if there is an integer t with 0 < t < d such that ko +k, = t for allz(’)“’zlflzfzz;<3 € S.Since X
is irreducible, we have t # 0 and t # d. We also get the last part of the theorem (starting with the word “Moreover ") using

the quotient maps G — G and GL(4, C) — PGL(4,C). O

Example 2. Assume d > 3 and fix an integer t suchthat3 <t <d—3.Takeo=(1:0:0:0)andgq=(0:0:1:0)and
s0j(o0)=(0:1:0:0)andj(q) = (0:0:0: 1).LetL be the line spanned by {o, j(0)}, R the line spanned by {q, j(q)} and
L, the line spanned by {o, q}. Fixq' € Ly \ {o, q}. Let D be the line spanned by {q’, j(¢')}. The lines L, R and D are 3 different
twistor lines. For simplicity we takeq' = (1:0: 1:0)and hencej(g) =(0:1:0:1)andR = {zg — 2z, = z; — z3 = 0}.
For all integers x > y > 0 let Sy, be the set of all monomials z(’)‘ozlflzgzz;<3 such that kg + k; = y and k; + k; = x — y. Let
Ay,y be the set of all C-linear combinations of elements of S, ,. Since |Sx | = (y + 1)(x —y + 1), Ay is a C-vector space of
dimension (x + 1)(x — 1+ 1). Let A4 ((—L — R — D) be the set of all surfaces X C CP3 containing L U D U R and with equation
in Ag,. Since h°(CP3, Ty pur(X)) = (XJ§3) —9forall x > 2, the set Aq(—L — R — D) is a projective space of dimension at
least (t + 1)(d — t + 1) — 10. Take a general X € A, (—L — R — D). To give an example for Theorem 1 it is sufficient to
prove that X is irreducible. By the second Bertini’s theorem [23, part 4 of Theorem 6.3] it is sufficient to prove that the linear
system | Aq(—L — R — D)| has no base components and the rational map y induced by |44 (—L — R — D)| has not a curve
as its image. We have L = {z; = z3 = 0} andR = {zp = z; = 0}.SinceR = {zp — 2z, = 21 — 23 = 0}, 20,22 € A1
and zq, z3 € Aj,, the curve L U D U R is contained in the zero-locus of the product of 2 elements of .A; ; and 2 elements of
Ajp.Forallx > y > 0 the linear system | Ay | has no base points and maps CP* onto a 3-dimensional variety. Since t > 3
andd — t > 3, we get that |44 (—L — R — D)| has 3-dimensional image and as possible base components only hyperplanes
{zi = 0}. We immediately check that no such hyperplane is a base component.

Lemma 6. Let X C CP3 be an integral degree d > 2 surface such that j(X) # X. Set T := X N j(X) and F := T,eq. The group
Stabg(X) is finite, unless there are a rational component D C F such that j(D) = D and o € D, such that D \ {o, j(0)} = C*, and o
and j(o) are stabilized by the connected component of Stabg(X) containing the identity.

Proof. Let G be the connected component of the identity of Stabg(X) and let G, be the Zariski closure of G; in Stabg(X).
Since X # j(X), T is a complete intersection curve of degree d? (perhaps with multiple components) and hence F is a reduced
curve. Since T = X N j(X), we have j(F) = F. Since every conformal map commutes with j, G; € Stabg(F) and hence
G, C Stabpgya,c)(F). Since G, is connected, it send each irreducible component of it into itself and hence G, does the same.
Let H C G, be the Zariski closure of a minimal non-trivial connected subgroup of G;. By

Lemma 5 we have H = C* and there is at least one irreducible component, E, of F on which H acts with an open orbit Ha
with E \ C* = {0, j(0)}. O

Remark 5. Let H be a connected complex linear algebraic group such that H # {Id}, i.e. dimH > 0. By [24, Lemma 6.10]
and the definition of reductive group and radical [18, 11.21] H is reductive with a torus as its radical and every connected
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solvable subgroup of H is a torus if and only if there is no subgroup of H isomorphic to the additive group C, (i.e. C with the
addition as its group operation).

Proof of Theorem 2. Since each element of G commutes with j, we have Stabg(X) € Stabpgia,c)(i(X)). Since Stabpgy4,c)(i(X))
is closed in PGL(4, C) in the Zariski topology and G, is Zariski dense in H, we have H C Stabpgy c)(ji(X)). Set T := X N j(X)
and F := T,eq. Since H acts on X and j(X), it acts on T and F. Since H is connected, we have H C Stabpg;4,c)(F;) for every
irreducible component of F.

(a) In this step we prove that H contains no subgroup isomorphic to C,. Assume, by contradiction, that H has a subgroup
H = C,.

Fix any irreducible component D of F. Either H’ fixes each point of D or there are a,b € D such that D = {b} U H'a
with H = C,. By Lemma 1 the former case may occur only if D is a line, which we excluded. Hence for each irreducible
component D there is a unique b € D such that H’'b = b (Lemma 5). Call §’ the set of all x € F such that H'’x = H'. We just
say that S’ # @ and that each irreducible component of F meets S’ at a unique point. For each x € S’ let F, be the union
of the irreducible components of F containing x. Since any two different orbits of H’ are disjoint, we get that two different
irreducible components of F either are disjoint or they meet at a unique point of S’, say x, and so they are contained in F(x).
Thus if x, X' € S’ we have F(x) N F(x') = . Since F is connected (Remark 3) we get |S’| = 1. However, since H' C H,j(F) = F
and H N G is Zariski dense in H, we see that j(S') = S’. Since j has no fixed point, we get a contradiction.

(b) Now we conclude the proof that H = C*. By Remark 5 step (a) proves that H is reductive with a torus as its
radical and every connected solvable subgroup of H is a torus. Since H is connected and it has no subgroup isomorphic to C,
(step (a)), by the classification of connected and one-dimensional linear algebraic groups [24, Theorem 2.6.6] it is sufficient
to prove dimH = 1. We saw in step (a) that every irreducible component D of F is rational and that the natural map
H — Stabpgy4,c)(D) is injective. Thus H is isomorphic to a subgroup of PGL(2, C). Since dim PGL(2, C) = 3 and PGL(2, C)
contains a subgroup isomorphic to C, (the set of all 2 x 2 strictly upper triangular matrices) we get dimH < 2. The
classification of all simple groups gives that every semi-simple algebraic group has dimension at least 3. Thus H is solvable.
Since H contains no subgroup isomorphic to C, (step (al)), H is a torus [24, Lemma 6.10]. All maximal tori of a semisimple
group like PGL(2, C) are conjugate [ 18, Corollary 11.3] and a maximal torus of PGL(2, C) has dimension 1, because any two
commuting semisimple element of SL(2, C) may be simultaneously diagonalized. O

If X C CP? is an integral degree d surface with j(X) # X, then T := X N j(X) is a complete intersection curve (perhaps
with multiple components or not irreducible). Obviously j(T) = T and Stabg(X) C Stabg(T). The following lemma shows
that the converse holds and gives a tool to find many surfaces X with j(X) # X and T = X N j(X).

Lemma 7. Let T C CP3 be the complete intersection of 2 degree d surfaces (we allow the case in which T has multiple
components). Then there is a degree d surface X C CP? without multiple components such that j(X) and X have no common
componentsand T = X N j(X).

Proof. Since T is a complete intersection of 2 degree 2 surfaces, Bezout’s theorem gives h°(CP3, Z(d)) = 2 and that T is the
base-locus of the linear system |Zr(d)|. Thus T is the scheme-theoretic intersection of any 2 elements of |Zr(d)|. Let X be a
general element of |Zr(d)|. Since T is the base-locus of |Zr(d)|, Bertini’s theorem ([23, part b of Theorem 6.3] or [25, I11.10.9])
implies that X is smooth outside T. Thus X has no multiple component. Since j(T) = T, the anti-holomorphic involution j
induces an anti-holomorphic involution y : |Zr(d)| — |Zr(d)|. O

It is usually very easy to check that a complete intersection curve, even a reducible one, is not a complete intersection of
2 surfaces, at least one of them being reducible.
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