期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS | 卷:144 |
Hasimoto variables, generalized vortex filament equations, Heisenberg models and Schrodinger maps arising from group-invariant NLS systems | |
Article | |
Anco, Stephen C.1  Asadi, Esmaeel2  | |
[1] Brock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada | |
[2] IASBS, Dept Math, Zanjan 4513766731, Iran | |
关键词: Geometric curve flow; Integrable systems; lsospectral flow; Vortex filament equation; Heisenberg spin model; Schrodinger map; | |
DOI : 10.1016/j.geomphys.2019.06.010 | |
来源: Elsevier | |
【 摘 要 】
The deep geometrical relationships holding among the NLS equation, the vortex filament equation, the Heisenberg spin model, and the Schrodinger map equation are extended to the general setting of Hermitian symmetric spaces. New results are obtained by utilizing a generalized Hasimoto variable which arises from applying the general theory of parallel moving frames. The example of complex projective space CPN = SU(N +1)/U(N) is used to illustrate the method and results. (C) 2019 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_geomphys_2019_06_010.pdf | 709KB | download |