期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:144
Hasimoto variables, generalized vortex filament equations, Heisenberg models and Schrodinger maps arising from group-invariant NLS systems
Article
Anco, Stephen C.1  Asadi, Esmaeel2 
[1] Brock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada
[2] IASBS, Dept Math, Zanjan 4513766731, Iran
关键词: Geometric curve flow;    Integrable systems;    lsospectral flow;    Vortex filament equation;    Heisenberg spin model;    Schrodinger map;   
DOI  :  10.1016/j.geomphys.2019.06.010
来源: Elsevier
PDF
【 摘 要 】

The deep geometrical relationships holding among the NLS equation, the vortex filament equation, the Heisenberg spin model, and the Schrodinger map equation are extended to the general setting of Hermitian symmetric spaces. New results are obtained by utilizing a generalized Hasimoto variable which arises from applying the general theory of parallel moving frames. The example of complex projective space CPN = SU(N +1)/U(N) is used to illustrate the method and results. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2019_06_010.pdf 709KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次