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equation, the Heisenberg spin model, and the Schrödinger map equation are extended to
the general setting of Hermitian symmetric spaces. New results are obtained by utilizing
a generalized Hasimoto variable which arises from applying the general theory of parallel
moving frames. The example of complex projective space CPN

= SU(N+1)/U(N) is used
to illustrate the method and results.
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1. Introduction

The classical nonlinear Schrödinger (NLS) equation iut = uxx +
1
2 |u|

2u for a complex-valued function u(x, t) is well-
known to arise in numerous physical applications and has a deep connection to differential geometry, particularly
symmetric spaces.

On one hand, from the viewpoint of isospectral theory in symmetric Lie algebras, the NLS equation is given by a linear
isospectral flow in the Lie algebra su(2) ≃ so(3). This provides a natural Lax pair for the NLS equation, which is directly
related to the AKNS scheme [1] yielding a hierarchy of isospectral equations and integrable flows in su(2) ⊂ sl(2,C). The
NLS isospectral flow is also associated with a geometric curve flow γt = [γs, γss] in the Lie algebra su(2) which is given
by the Sym–Pohlmeyer [29,32] construction. Constant phase rotations on u, which are a symmetry of the NLS equation,
correspond to a U(1) gauge group of transformations generated by a u(1) Cartan subalgebra in su(2). This is directly related
to the structure of CP1

= SU(2)/U(1) ≃ S2 as a Hermitian symmetric space.
On the other hand, from the viewpoint of geometric integrability theory in Riemannian symmetric spaces, the NLS

equation arises as the evolution equation for the curvature and torsion (κ, τ ) of a non-stretching curve flow γ⃗ (x, t) in
Euclidean space R3. The motion of the curve is given by the bi-normal equation γ⃗t = κT × N = γ⃗x × γ⃗xx where T = γ⃗x is
the unit tangent vector, N is the normal vector, and B = T×N is the bi-normal vector comprising a Frenet frame (T,N,B)
along the curve. Note that R3 has the natural structure of a Riemannian symmetric space (SO(3) ⋊ R3)/SO(3) in which
the SO(3) is the structure group of orthonormal frames. In this formulation [26], (κ, τ ) = (|u|, arg(u)x) are invariants of
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the curve, while u = κei
∫
τ dx has the geometrical meaning of a U(1)-covariant of the curve, with (Reu, Imu) being the

components of the Cartan matrix of a parallel frame [15] given by the tangent vector T and the pair of normal vectors
Re(ei

∫
τ dx(N + iB)), Im(ei

∫
τ dx(N + iB)). The phase-rotation symmetry on u corresponds to a U(1) ≃ SO(2) gauge group

of transformations in SO(3) preserving the structure of a parallel frame by rigid rotations in the normal plane along the
curve.

As shown by Hasimoto [19], the bi-normal equation also describes the physical motion of a vortex filament in fluid
mechanics. Furthermore, the bi-normal equation can be interpreted as a Heisenberg spin model in R3, or equivalently as
a Schrödinger map equation on the sphere S2. The geometrical interrelationships among these physical and mathematical
formulations of the NLS equation have been explored in Ref. [12]. Abstract formulations involving differential invariants,
Hamiltonian structures, and loop groups can be found in Refs. [24,25,33].

A generalization of linear isospectral flows yielding group invariant multi-component integrable NLS systems is
known [17] for all Lie algebras associated with Hermitian symmetric spaces (namely, Riemannian symmetric spaces
with a compatible complex structure). These isospectral flows, called Fordy–Kulish systems, each have an associated
Sym–Pohlmeyer curve flow which can be viewed as a Lie-algebra version of a bi-normal equation [22].

A generalization of parallel frames and Hasimoto variables yielding group-invariant integrable systems is known [6]
for all Riemannian symmetric spaces. This includes [5] semi-simple Lie groups, viewed in a natural way as diagonal
Riemannian symmetric spaces. In particular, the results in Ref. [5] show that the NLS equation arises directly from
a parallel frame formulation of a non-stretching geometric curve flow given by a chiral Schrödinger map equation
in the Lie group SU(2), which is a variant of the Sym–Pohlmeyer curve flow in the Lie algebra su(2). This type of
geometrical derivation of group-invariant integrable systems and corresponding non-stretching map equations has been
pursued [2,4,8–10,30] for all of the basic classical (non-exceptional) Riemannian symmetric spaces, yielding many types
of multi-component mKdV and sine–Gordon systems, as well as multi-component NLS systems [5], formulated in terms
of Hasimoto variables.

In the present paper, we adapt the general results on parallel frames and Hasimoto variables from Ref. [6] to extend
the geometrical relationships among the NLS equation, the vortex filament equation, the Heisenberg spin model, and the
Schrödinger map equation to the general setting of Hermitian symmetric spaces. Several main results are obtained.

We give a new geometrical derivation of the Fordy–Kulish isospectral NLS flows [17], together with the associated
Sym–Pohlmeyer curve flows [22], in all Lie algebras that arise from Hermitian symmetric spaces. The derivation provides
an explicit bi-Hamiltonian formulation for the NLS flows and the Sym–Pohlmeyer curve flows. We also show that the
underlying geometrical curve flows can be formulated as bi-normal equations which can be viewed as vortex filament
equations in affine symmetric spaces defined from the Lie algebras.

Most interestingly, we derive generalized Heisenberg spin vector models and Schrödinger map equations from
the vortex filament equations in affine symmetric spaces, and we obtain their explicit bi-Hamiltonian structure. The
Schrödinger map equations describe a geometric version of the NLS equation for a map into a Hermitian symmetric space,
which is generalization of the Grassmannian spaces studied in Ref. [33]. We also show that the equations corresponding to
axial motion of a vortex filament in affine symmetric spaces correspond to a higher-order Heisenberg spin vector model
and an mKdV analog of a Schrödinger map equation, which have a simple bi-Hamiltonian structure. The explicit form
of the Hamiltonian structures of these geometric map equations is shown to involve only the intrinsic Hermitian and
Riemannian structure of the Hermitian symmetric space. Furthermore, we obtain an explicit recursion operator arising
from Magri’s theorem [23] applied to this bi-Hamiltonian structure, which yields a hierarchy of higher order geometric
map equations. We show how the resulting hierarchy of Hamiltonians leads, through the inverse recursion operator, to
a hierarchy of Hamiltonian forms for the Schrödinger map equations and their mKdV analogs. We also derive a new
non-standard Hamiltonian structure for these equations.

In addition, we show how to obtain an explicit matrix representation for the Schrödinger map variable, the spin
vector variable, and the Hasimoto variable. The matrix representation provides a Backlund transformation relating the
isospectral flows, vortex filament equations, Heisenberg spin vector models, and Schrödinger map equations. This allows
the integrability properties of any one of these nonlinear PDE systems to be transferred to any other.

All of these new results, which make essential use of the generalized Hasimoto variable in Lie algebras associated
with Hermitian symmetric spaces, will be of interest for applications and further developments in both mathematics and
physics.

The basic geometric setting for this work will be to formulate a Lie algebra g that is associated with a general Hermitian
symmetric space as being an affine semidirect-product symmetric space g ≃ (G ⋊ g)/G, analogously to the treatment of
semi-simple Lie groups in Ref. [5]. We develop a general theory and apply it to the Lie algebra su(N + 1) ≃ CN

⊕ u(N)
corresponding to the complex projective space CPN

= SU(N + 1)/U(N). This example will provide a higher-dimensional
version of the vortex filament equation, the Heisenberg spin model, and the Schrödinger map equation, since in the case
N = 1, we have g = su(2) ≃ so(3) ≃ (SO(3) ⋊ R3)/SO(3), with R3

≃ so(3). The NLS and mKdV isospectral flows for this
example reproduce the vector NLS system and vector mKdV system derived in Ref. [5] from the Lie group SU(N +1), with
the Hasimoto variable being a complex vector in CN .

The rest of the present paper is organized as follows.
Section 2 reviews the theory of linear isospectral flows and the resulting integrable Fordy–Kulish NLS systems in Lie

algebras associated with Hermitian symmetric spaces. For later comparison, the recursion operator and its factorization
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Table 1
Non-exceptional Hermitian symmetric Lie algebras.
Type g h m

A III su(n + m) s(u(n) ⊕ u(m)) R2nm

D III so(2n) u(n) Rn(n−1)

BD I so(n + 2) so(n) ⊕ so(2) R2n

C I sp(n) u(n) Rn(n+1)

into Hamiltonian operators generating higher isospectral flows, in particular integrable mKdV systems, are presented in
an explicit form. A short summary of the Sym–Pohlmeyer construction of associated curve flows is also given.

Section 3 presents the new geometrical derivation of this isospectral hierarchy. As a first step, the geometrical and
algebraic structure defining an affine Hermitian symmetric space is stated. Next, the formulation of parallel frames and
Hasimoto variables in Riemannian symmetric spaces is adapted to affine Hermitian symmetric spaces. This formulation
is then applied to non-stretching curve flows, where the flow is shown to induce a bi-Hamiltonian isospectral equation
on the Hasimoto variable. By considering geometric flows generated by a translation symmetry and a Hermitian (phase)
symmetry of this bi-Hamiltonian structure, the resulting flows on the Hasimoto variable are shown to yield exactly the
NLS hierarchy of Fordy–Kulish isospectral flows. The relationship between the parallel frame formulation and the Sym–
Pohlmeyer construction is explained. It is emphasized that bi-Hamiltonian structure and its associated recursion operator
arise in a natural geometric fashion in the parallel frame formulation, whereas the Hamiltonian structures are hidden in
the Sym–Pohlmeyer construction.

Section 4 first shows how to obtain the explicit form of the geometric non-stretching curve flows. For the Fordy–
Kulish NLS systems and associated mKdV systems, these curve flows are shown to be given by a generalized version of,
respectively, the vortex filament equation and the equation describing axial motion of a vortex filament. These equations
are formulated geometrically in terms of the tangent vector, normal vector, and a generalized bi-normal vector of the
underlying curves in affine Hermitian symmetric spaces. Next, the vortex filament equation is shown to yield a general
Heisenberg spin model, while the equation for axial motion of a vortex filament is shown to give rise to a related higher-
order spin vector model, where the dynamical variable in these models is given by the tangent vector of the curve.
In addition, a geometric recursion operator is derived which generates a hierarchy of non-stretching curve flows and
associated spin vector models. This result establishes that each geometric curve flow and associated spin vector model
possesses an infinite hierarchy of higher symmetries. Section 5 extends these main results by showing that the geometric
curve flows and associated spin vector models have an explicit bi-Hamiltonian structure which arises from a factorization
of the geometric recursion operator. A new non-standard Hamiltonian structure for these equations is also obtained. As
a consequence, all of the geometric curve flows and spin vector models are tri-Hamiltonian integrable systems.

Section 6 derives, for all Hermitian symmetric spaces, the general Schrödinger map equation and its mKdV analog
from, respectively, the general Heisenberg spin model and its higher-order counterpart in affine Hermitian symmetric
spaces. These geometric map equations are shown to represent curve flows that are locally stretching but whose total
arclength is a constant of motion. The main integrability features of these geometric map equations are presented,
including their recursion operator and multi-Hamiltonian structure in an explicit geometrical form. In addition, the explicit
matrix representations and Backlund transformations for the general Schrödinger map equation and the associated general
Heisenberg spin vector model and vortex filament equation are stated.

Section 7 applies the preceding results to the example of the Hermitian symmetric space CPN
= SU(N + 1)/S(U(N)×

U(1)) = SU(N+1)/U(N) and the associated Lie algebra su(N+1) ≃ CN
⊕u(N). The correspondence between the isospectral

NLS flows and their associated Heisenberg spin models and Schr odinger map equations is shown in an explicit form. The
necessary algebraic structure is summarized in an appendix. Concluding remarks are given in Section 8.

2. Fordy-Kulish NLS hierarchy

We will begin by summarizing the theory of isospectral flows in Lie algebras associated with Hermitian symmetric
spaces, as developed in Ref. [17].

Recall [20], a compact semi-simple Lie group G with subgroup H such that the quotient of Lie algebras m = g/h has a
complex structure defines a Hermitian symmetric space G/H . This is equivalent to stating that g = m ⊕ h is a Hermitian
symmetric Lie algebra.

There is a well-known classification of Riemannian and Hermitian symmetric spaces [20]. These spaces divide up
into classical and exceptional types. The corresponding irreducible Hermitian symmetric Lie algebras of classical type
are shown in Table 1.

The Lie bracket structure of a Hermitian symmetric Lie algebra g = m ⊕ h is given by

[h, h] ⊆ h, [h,m] ⊆ m, [m,m] ⊆ h, (2.1)

while the Hermitian structure consists of an element A ∈ h such that its centralizer in g is h, and it acts as an imaginary-unit
on m:

Cg(A) = h, (2.2)

adm(A)2 = −idm. (2.3)
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Thus, ad(A)m = m and ad(A)h = 0. The element A has the squared norm

K (A, A) = tr(adm(A)2) = − dim(m) (2.4)

in the Killing inner product on g.

In the example of g = su(2) =

(
ia b + ic

−b + ic −ia

)
, a, b, c ∈ R, the Hermitian structure is given by A =( 1

2 i 0
0 −

1
2 i

)
∈ h =

(
ia 0
0 −ia

)
, where adm(A) = J acts as a complex structure on m =

(
0 b + ic

−b + ic 0

)
by Jm =(

0 i(b + ic)
−i(−b + ic) 0

)
=

(
0 −c + ib

c + ib 0

)
. Here h ≃ u(1) and m ≃ R2

≃ C.

2.1. Isospectral flows

The theory starts with a linear overdetermined system

φs = Uφ, φt = Vφ, (2.5)

in which φ = φ(s, t, λ) takes values in the Lie group G, while U(s, t, λ) and V (s, t, λ) take values in the Lie algebra g.
Compatibility of Eqs. (2.5) yields a Lax pair formulated as a zero-curvature equation

Ut − Vs + [U, V ] = 0. (2.6)

Choose U = U(s, t, λ) to be a linear polynomial in λ,

U = λA + Q , (2.7)

where Q = Q (s, t), called the potential, sits in m ⊂ g. Choose V = V (s, t, λ) to be a Laurent polynomial in λ,

V =

∑
k

λkV (k). (2.8)

Then for the zero-curvature equation (2.6) to hold with λ being arbitrary, the coefficient of each separate power of λmust
vanish. This describes a generalization of the AKNS scheme [1] from sl(2,C) to g.

To derive the NLS isospectral flow, take V to be a quadratic polynomial,

V = V (2)λ2 + V (1)λ+ V (0). (2.9)

The coefficients of λ in the zero-curvature equation (2.6) projected into h and m yield the system

DsV
(0)
h = [Q , V (0)

m ], (2.10)

DsV
(1)
h = [Q , V (1)

m ], (2.11)

DsV
(2)
h = [Q , V (2)

m ], (2.12)

and

Qt = DxV (0)
m − [Q , V (0)

h ], (2.13)

DsV (1)
m − [Q , V (1)

h ] − [A, V (0)
m ] = 0, (2.14)

DsV (2)
m − [Q , V (2)

h ] − [A, V (1)
m ] = 0, (2.15)

[A, V (2)
m ] = 0, (2.16)

for V (k)
m , V (k)

h , k = 0, 1, 2. Eq. (2.16) leads to V (2)
m = 0 by property (2.2). As a consequence, equation (2.12) can be integrated,

which gives

V (2)
h = c2A, c2 = const. (2.17)

Next, Eq. (2.15) becomes [A, c2Q − V (1)
m ] = 0, whence

V (1)
m = c2Q (2.18)

by property (2.2). Eq. (2.11) then can be integrated, yielding

V (1)
h = c1A, c1 = const. (2.19)

Substitution of these expressions into Eq. (2.14) gives c2Qs = [A, V (0)
m − c1Q ]. Hence

V (0)
m = c1Q − c2ad(A)Qs (2.20)
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by properties (2.2) and (2.3). Next, Eq. (2.10) becomes DsV
(0)
h = −c2[Q , ad(A)Qs] which simplifies to DsV

(0)
h = −

1
2 c2

[Q , ad(A)Q ]s through the Jacobi identity [Q , ad(A)Q ]s = 2[Q , ad(A)Qs]+ad(A)[Qs,Q ] combined with ad(A)[Qs,Q ] = 0 due
to [Qs,Q ] ∈ h. Thus,

V (0)
h = c0A −

1
2 c2[Q , ad(A)Q ]s (2.21)

with the integration constant chosen in the same way as before.
Finally, the evolution equation (2.13) reduces to

Qt = c0ad(A)Q + c1Qs − c2(ad(A)Qss −
1
2 [Q , [Q , ad(A)Q ]]). (2.22)

This equation can be cleaned up as follows. Write

ad(A) = J (2.23)

where J2 = −id on m. Now apply a Galilean transformation t → t , s → s + c1t combined with a phase transformation
Q → exp(c0ad(A))Q , and use a scaling t →

1
c2
t . As a result, Eq. (2.22) becomes

Qt = −JQss +
1
2 [Q , [Q , JQ ]], (2.24)

which is called the Fordy–Kulish NLS system [17]. Note that it comes from V (0)
= −

1
2 [Q , JQ ]s − JQs, V (1)

= Q , V (2)
= A.

This NLS system is integrable. It has the Lax pair

U = λA + Q , V = −
1
2 [Q , JQ ]s − JQs + λQ + λ2A, (2.25)

and corresponding isospectral equation

φs = (λA + Q )φ, φt = (− 1
2 [Q , JQ ]s − JQs + λQ + λ2A)φ. (2.26)

2.2. An isospectral hierarchy

For any polynomial V =
∑n

k=0 λ
kV (k), the zero-curvature equation (2.6) splits into a coupled system that contains

Eqs. (2.10), (2.11), (2.13), (2.14). These four equations turn out to encode a recursion operator.
First, eliminate V (0)

h from Eq. (2.13) via Eq. (2.10) to get

Qt = HV (0)
m (2.27)

where

H = Ds − ad(Q )D−1
s ad(Q ). (2.28)

Next, eliminate V (1)
h from Eq. (2.14) via Eq. (2.11) to get

V (0)
m = R∗V (1)

m (2.29)

where

R∗
= J−1(Ds − ad(Q )D−1

s ad(Q )) = J−1H (2.30)

is the adjoint of

R = (Ds − ad(Q )D−1
s ad(Q ))J−1

= HJ−1. (2.31)

Theorem 1. If V is polynomial of degree n ≥ 2 in λ, then the corresponding isospectral flow is given by

Qt = HR∗n−1(Q ) = Rn(JQ ) (2.32)

called the +n flow, where R = HJ−1 is a hereditary recursion operator. Moreover, H and J are compatible Hamiltonian
operators. Each of these operators, along with all of the isospectral flows, are invariant under the unitary group Ad(H).

A geometrical derivation of H and R will be given in Section 3 where the proof of their properties will be discussed.
Moreover, the potential Q will be seen to be a Hasimoto variable, which is related to the principal curvature of non-
stretching geometric curve flows associated with the isospectral flows by the Sym–Pohlmeyer construction, as shown in
Section 4. This will also provide a geometric origin for the unitary invariance of the isospectral flows and the Hamiltonian
operators.

In the hierarchy (2.32), the 0 flow is Qt = JQ , and the +1 flow is Qt = Qs, while the +2 flow is the Fordy–Kulish NLS
system (2.24). The +3 flow can be shown to be given by the mKdV system

Qt = −Qsss + [Q , [Q ,Qs]] +
1
2 [JQ , [JQ ,Q ]]s (2.33)

which is derived in Ref. [14].
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As is well known, negative flows arise by taking V to be a Laurent polynomial in λ. The first negative flow is given by

U = λA + Q , V = λ−1V (−1), (2.34)

which leads to the system

Qt = −[A, V (−1)
m ], DsV (−1)

m = [Q , V (−1)
h ], DsV

(−1)
h = [Q , V (−1)

m ]. (2.35)

This system is equivalent to the flow equation

R(Qt ) = 0 (2.36)

called the −1 flow.

2.3. Sym–Pohlmeyer curves

Each isospectral flow in the hierarchy (2.32) gives rise to an associated curve flow via the Sym–Pohlmeyer construction
starting from the linear isospectral system (2.5) for φ(s, t, λ). The curve is defined by

γ (s, t) = φ−1φλ
⏐⏐
λ=0 (2.37)

which lies in the Lie algebra g. It is straightforward to see that the tangent vector and the flow vector of γ are given by

γs = φ−1Uλφ
⏐⏐
λ=0 = φ−1

0 Aφ0, γt = φ−1Vλφ
⏐⏐
λ=0 = φ0

−1V (1)φ0, (2.38)

where φ0 = φ|λ=0. Moreover, the tangent vector γs satisfies K (γs, γs) = K (φ0
−1Aφ0, φ0

−1Aφ0) = K (A, A) = − dim(m).
Hence the arclength parameter of the curve γ is related to s by

x =

√
dim(m) s (2.39)

with K (γx, γx) = −1. Furthermore, γts = (φ0
−1Aφ0)t = φ0

−1
[A, V (0)

]φ0 = φ0
−1JV (0)φ0, and thus K (γs, γts) = K (φ0

−1Aφ0,

φ0
−1JV (0)φ0) = K (A, JV (0)) = −K (JA, V (0)) = 0. This shows that the arclength x is locally preserved in the curve flow,

∂tK (γx, γx) = 0. (2.40)

For a given isospectral flow, V (1) will be a function of Q and s-derivatives of Q , which can be expressed in terms of
s-derivatives of γs through the following relations:

γss = (φ0
−1Aφ0)s = φ0

−1
[A,Q ]φ0 = φ0

−1JQφ0, (2.41)

[γs, γss] = [φ0
−1Aφ0, φ0

−1JQφ0] = φ0
−1

[A, JQ ]φ0 = φ0
−1J2Qφ0 = −φ0

−1Qφ0, (2.42)

using φ0 s = qφ0 from the linear isospectral system (2.5). Then γt = φ0
−1V (1)φ0 will yield an explicit equation of motion

for the curve flow.
In particular, the NLS isospectral flow (2.24) has V (1)

= Q , which yields γt = φ0
−1Qφ0 = −[γs, γss]. Hence, the

Sym–Pohlmeyer curve flow associated with the Fordy–Kulish NLS system (2.24) is given by [22]

γt = −[γs, γss] (2.43)

in the Hermitian symmetric Lie algebra g.
The mKdV isospectral flow (2.33) can be seen to have V (1)

= −JQs−
1
2 [Q , JQ ]. This yields γt = −φ0

−1(JQs+
1
2 [Q , JQ ])φ0.

From relations (2.41)–(2.41), note [γss, [γss, γs]] = φ0
−1

[JQ , [JQ , A]]φ0 = φ0
−1

[JQ ,Q ]φ0 and γsss = φ0
−1(JQs + [JQ ,Q ])φ0.

Hence, γsss −
3
2 [γss, [γss, γs]] = φ0

−1(JQs +
1
2 [Q , JQ ])φ0, and so the Sym–Pohlmeyer curve flow associated with the mKdV

system (2.33) is given by [22]

γt = −γsss +
3
2 [γss, [γss, γs]] (2.44)

in the Hermitian symmetric Lie algebra g.

3. Geometrical derivation of the isospectral hierarchy

We will now present an entirely geometrical new derivation of the hierarchy of isospectral flows (2.32), including the
Fordy–Kulish NLS system (2.24) and the associated mKdV system (2.33).

The setting for the derivation is given by non-stretching curve flows in an affine symmetric space constructed from
any Hermitian symmetric Lie algebra (g, A), with a corresponding compact semisimple Lie group G. Key ingredients will
be to introduce a G-parallel frame and corresponding Hasimoto variable, by applying the general results in Ref. [6] for
Riemannian symmetric spaces.
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3.1. Affine Hermitian symmetric spaces

A Hermitian symmetric Lie algebra (g, A) consists of [20,21] a vector space g = m ⊕ h equipped with the following
structure: a Lie bracket with the properties (2.1); a complex structure J = ad(A) on m, satisfying properties (2.2)–(2.3),
where ad(A)h = 0; an ad-invariant inner product given by the Killing form K ( · , · ).

Typically, a symmetric Lie algebra g = m ⊕ h is identified with the infinitesimal isometry group G of a corresponding
symmetric space defined by M = G/H , with H ⊂ G being the stabilizer group of the origin o of M . There is a left-invariant
g-valued 1-form on G, called the Maurer–Cartan form [20,21], which provides a canonical isomorphism between the vector
space m and the tangent spaces of M . As a manifold, the symmetric space M = G/H will have a curvature 2-form given
in terms of Maurer–Cartan. When g has a Hermitian structure, the resulting curved Hermitian manifold M = G/H is a
Hermitian symmetric space (namely, a Riemannian symmetric space with a compatible complex structure) [20,21],

Rather than considering this geometrical setting, we instead construct an affine symmetric space

aff(G,H) := (G ⋊ g)/G, (3.1)

where G acts by a semidirect product on g via the adjoint representation. This space has a very different geometrical
structure in comparison to M = G/H .

Elements of G ⋊ g will be represented by (g, a), with g ∈ G, a ∈ g, where G ⊂ G ⋊ g is the inclusion (g, 0). A group
product for G ⋊ g will be defined by (g1, a1)(g2, a2) = (g1g2,Ad(g1)a2 + a1), which has a semidirect product structure.

We will now explain the main features of the space aff(G,H).
First, we consider the algebraic structure of aff(G,H). The Lie algebra of G ⋊ g is gaff := g ⋊ g. As a vector space,

gaff = haff ⊕ maff (3.2)

whose elements will be represented by

(a, a′) ∈ gaff, (a, 0) ∈ haff ≃ g, (0, a′) ∈ maff ≃ g ≃ Rdim(g), (3.3)

with a, a′
∈ g. The Lie bracket on gaff is given by

[(a1, a′

1), (a2, a
′

2)] = ([a1, a2], [a1, a′

2] + [a′

1, a2]). (3.4)

For later, it will be useful to note the semidirect algebra structure is given by

[(a1, 0), (a2, 0)] = ([a1, a2], 0), [(a1, 0), (0, a′

2)] = (0, [a1, a′

2]), [(0, a′

1), (0, a
′

2)] = (0, 0). (3.5)

The Lie bracket gives aff(G,H) the structure of a symmetric space

[haff, haff] ⊆ haff, [haff,maff] ⊆ maff, [maff,maff] = 0. (3.6)

There are further decompositions maff = Rdim(h)
⊕Rdim(m), haff = h⊕m, gaff = (h⊕m)⋊(h⊕m), which induce corresponding

decompositions of the Lie bracket, used later.
The element A ∈ h defines a complex structure Jaff = ad((A, 0)) on both (m, 0) ⊂ haff and (0,m) ⊂ maff. Moreover,

J2aff = −idm acts as a projection operator on these subspaces and annihilates the complementary subspaces (h, 0) ⊂ haff
and (0, h) ⊂ maff.

The Killing form on g yields a positive-definite inner product on gaff:

⟨(a1, a′

1), (a2, a
′

2)⟩aff := −K (a1, a2) − K (a′

1, a
′

2). (3.7)

This inner product is ad-invariant. It is also Hermitian invariant when restricted to the subspaces (m, 0) ⊂ haff and
(0,m) ⊂ maff.

Next, we consider structure of aff(G,H) as a Klein geometry [6,31].
The space aff(G,H) possesses a Maurer–Cartan form Ω which is a left-invariant gaff-valued 1-form on G⋊ g satisfying

dΩ +
1
2 [Ω,Ω] = 0. (3.8)

Moreover, aff(G,H) is a principal G-bundle over g on whichΩ defines a zero-curvature connection. LetΩaff be the pullback
of Ω from G to aff(G,H) in a local trivialization of the bundle aff(G,H). A smooth change of the local trivialization is
described by a G-valued function g(x) on aff(G,H). This induces a gauge transformation of Ωaff:

Ωaff
→ Ω̃aff

= Ad(g(x)−1)Ωaff
+ g(x)−1dg(x). (3.9)

The 1-form Ωaff can be decomposed via the vector space structure (3.2). This yields

e := (Ωaff)maff , ω := (Ωaff)haff , (3.10)

where

de + [ω, e] = 0, (3.11)

dω +
1
2 [ω,ω] = 0 (3.12)
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arise from the zero-curvature property (3.8) of the Maurer–Cartan form. These equations (3.11)–(3.12) imply that e is a
g-valued linear coframe on aff(G,H), and ω is a g-valued linear connection 1-form ω on aff(G,H). In particular, e provides
a linear map from the tangent space of aff(G,H) at any point x into the vector space maff:

e : Txaff(G,H) ↦→ maff ≃ g. (3.13)

The structure group of frame bundle of aff(G,H) is G. Under a local gauge transformation (3.9), the linear coframe and
linear connection transform by

ẽ = Ad(g(x)−1)e, ω̃ = Ad(g(x)−1)ω + g(x)−1dg(x). (3.14)

Last, we consider the Riemannian structure of aff(G,H).
As a manifold, aff(G,H) is a vector space in which vectors X ∈ Txaff(G,H) ≃ aff(G,H) can be identified with elements

e⌋X ∈ maff through the soldering relation (3.13). The inner product on maff thereby yields a positive-definite metric on
aff(G,H):

g(X, Y ) := ⟨e⌋X, e⌋Y ⟩aff. (3.15)

The manifold aff(G,H) carries a group action by G, where group elements g ∈ G act on vectors X ∈ aff(G,H) via

e⌋(gX) = Ad(g)(e⌋X) = g(e⌋X)g−1. (3.16)

The isometry group of aff(G,H) is G ⋊ g, with g ⊂ G ⋊ g acting as translations.
The metric g on aff(G,H) determines a torsion-free Riemannian connection, which can be viewed as a contravariant

derivative ∇⃗ satisfying ∇⃗g = 0. This contravariant derivative provides a covariant derivative, ∇X = g(X, ∇⃗), which is
given in terms of the linear connection ω through the soldering form e:

e⌋∇XY := ∂X (e⌋Y ) + [ω⌋X, e⌋Y ]. (3.17)

The Maurer–Cartan equations (3.11)–(3.12) combined with the symmetric space structure (3.6) show that ∇⃗ has
vanishing torsion T (X, Y ) = ∇XY − ∇YX − [X, Y ] = 0 and vanishing curvature R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ] = 0; here the
bracket [ ·, · ] denotes the commutator of vector fields.

Thus, aff(G,H) is a flat manifold, whose Riemannian structure is isomorphic to a Euclidean space Rdim(g). It has a
degenerate Hermitian structure J given by

e⌋J(Y ) := ad(A)(e⌋Y ), (3.18)

where J2(Y ) = −Y if e⌋Y belongs to either (m, 0) ⊂ haff or (0,m) ⊂ maff, and otherwise J2(Y ) = 0.
Finally, the group action of G provides an explicit representation for the soldering (3.13).

Proposition 1. The soldering (3.13) of the tangent space of aff(G,H) onto maff is explicitly given by

Ad(ψe(x))maff = Txaff(G,H) ≃ aff(G,H), ψe(x) ∈ G. (3.19)

In particular, the linear coframe and linear connection thereby have the corresponding explicit representation

e = (0,Ad(ψe
−1)), ω = (ψe

−1dψe, 0). (3.20)

Thus, there is a one-to-one correspondence between functions ψe(x) : aff(G,H) → G and linear coframes e :

Txaff(G,H) → maff ≃ g.
The derivation of the representations (3.20) is straightforward from Eqs. (3.13) and (3.17). Specifically, for vectors

X, Y ∈ Txaff(G,H) ≃ aff(G,H), note the soldering relation (3.19) gives a mapping of Y into an element in maff given
by Ad(ψe

−1)Y , which thus implies e⌋Y = (0,Ad(ψe
−1)Y ). This mapping directly establishes the representation for the

linear coframe. Then, note e⌋∇XY = ∂X (0,Ad(ψe
−1)Y ) + ad(ωX )(0,Ad(ψe

−1)Y ) = (0, ∂X (Ad(ψe
−1)Y ) + [ωX ,Ad(ψe

−1)Y ])
by Eq. (3.17), while e⌋∇XY = (0,Ad(ψe

−1)∇XY ) = (0, ∂X (Ad(ψe
−1)Y )+[ψe

−1∂Xψe,Ad(ψe
−1)Y ]) by the previous soldering

relation, with the use of ∂XAd(ψe
−1) = −ad(ψe

−1∂Xψe). Equating these expressions for e⌋∇XY yields the representation
for the linear connection.

3.2. Parallel framing of non-stretching curve flows

Now consider an arbitrary smooth non-stretching curve flow γ⃗ = γ⃗ (x, t) in an affine Hermitian symmetric space
aff(G,H), where x parameterizes the curve and t is time. The non-stretching property means that the arclength |γ⃗x|dx is
locally preserved at every point x on the curve under evolution, so that Dt |γ⃗x| = 0, with |γ⃗x| =

√
g(γ⃗x, γ⃗x). Hereafter, x

will be taken to be the arclength, and its domain will be assumed to be C = R or S1.
A moving frame for γ⃗ (x, t) consists of specifying a set of dim(g) orthonormal vectors spanning aff(G,H) at each point

in the two-dimensional surface γ⃗ (x, t). From the viewpoint of Klein geometry [31], this is equivalent to specifying an
orthonormal basis for g ≃ maff which gets mapped into corresponding frame vectors for the tangent space Tγ⃗ aff(G,H)
of the surface γ⃗ (x, t) through the soldering relation (3.13) provided by the linear coframe e. In particular, if X is a frame
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vector in Tγ⃗ aff(G,H), then e⌋X is its corresponding basis element in g. The frame is said to be adapted to the curve if the
tangent vector γ⃗x is one of the frame vectors, while the remaining frame vectors belong to the normal space of γ⃗x.

Given an orthonormal adapted frame at any point x on the curve γ⃗ (x), its infinitesimal transport along the curve is
given by the Cartan connection matrix which describes the Frenet equations of the frame. Through the soldering relation
(3.13), the Cartan connection matrix can be identified with the linear connection ω projected along the tangent vector γ⃗x
of the curve:

∇xe = −ad(ω⌋γ⃗x)e, (3.21)

where ∇x = g(γ⃗x, ∇⃗). Similarly, the infinitesimal transport of the frame at each point x under the flow γ⃗ (x, t) is given by
the Cartan connection matrix arising from the evolution equations of the frame, which can be identified with the linear
connection ω projected along the flow vector γ⃗t :

∇te = −ad(ω⌋γ⃗t )e, (3.22)

where ∇t = g(γ⃗t , ∇⃗).
Two orthonormal adapted frames will be related locally by the action (3.14) of frame gauge group G such that e⌋γ⃗x

remains fixed, namely Ad(g(x)−1)(e⌋γ⃗x) = e⌋γ⃗x. When ω⌋γ⃗x is held fixed in addition to e⌋γ⃗x, then the action of the gauge
group relating the two frames consists only of a rigid transformation (3.14) in which g is a constant group element
belonging to the stabilizer subgroup of e⌋γ⃗x in g. This subgroup in G is called the equivalence group of an adapted frame.

As a result, a non-stretching curve flow together with an adapted orthonormal frame is determined up to equivalence
by specifying

ex := e⌋γ⃗x ∈ maff, et := e⌋γ⃗t ∈ maff,

ωx := ω⌋γ⃗x ∈ haff, ωt := ω⌋γ⃗t ∈ haff,
(3.23)

for the projections of e and ω along the curve and along the flow, respectively. In particular, ex can be chosen as a
constant, while et , ωx, ωt will be, in general, functions of (x, t). These functions will satisfy the Maurer–Cartan equations
(3.11)–(3.12) on the two-dimensional surface swept out by γ⃗ (x, t):

Dxet − Dtex + [ωx, et ] − [ωt , ex] = 0, (3.24)

Dxωt − Dtωx + [ωx, ωt ] = 0, (3.25)

where Dx,Dt represent total derivatives. Note that [ex, et ] = 0 because aff(G,H) is a flat space.
The non-stretching property of γ⃗ (x, t) imposes the condition that ex has unit norm, ⟨ex, ex⟩aff = 1. Hence ex is a constant

unit-norm element in maff. Under a local gauge transformation on the frame, ex transforms into ẽx = Ad(g(x)−1)ex. Hence,
the possible inequivalent choices for ex are in one-to-one correspondence with the orbits of the group action Ad(G) on
Ψaff. If the group G has rank greater than one, then there will be more than one choice of ex up to equivalence. (For
further discussion, see Ref. [6].) Consequently, curves γ⃗ (x, t) in aff(G,H) at any fixed time t can be divided into algebraic
equivalence classes determined by the inequivalent choices of ex in maff. Since ex is constant, a curve flow γ⃗ (x, t) will stay
in the same equivalence class throughout its evolution.

Remark 1. The equivalence class of curves that will be relevant for obtaining a geometrical realization of the isospectral
flows (2.32) turn out to have ex belonging to the span of the element A in h. This is motivated by comparing the
representation ex = (0,Ad(ψe

−1)γ⃗x) for the tangent vector γ⃗x given by the soldering relation (3.20) and the analogous
representation (2.38) for the tangent vector γ⃗s of the Sym–Pohlmeyer curve associated with an isospectral flow.

Thus, hereafter the curve flows γ⃗ (x, t) under consideration will be taken to have

ex := e =
1
χ
(0, A) ∈ maff, (3.26)

where

χ2
= ⟨(0, A), (0, A)⟩aff = −K (A, A) = dim(m) (3.27)

is the norm-squared of A.
From the general theory of parallel frames in Ref. [6], a G-parallel frame for these curve flows γ⃗ (x, t) in aff(G,H) will

be an adapted frame having the property that its Cartan connection matrix ωx belongs to the perp space of the centralizer
of ex in haff. The equivalence group of this frame consists of the subgroup G∥ ⊂ G that preserves ex. Its Lie algebra g∥ ⊂ g
is the centralizer of A, which is given by h from property (2.2), and hence G∥ = H .

To work out what this definition implies for ωx, let (haff)∥ be the centralizer of e in haff, given by [e, (haff)∥] = 0, and
let (haff)⊥ be the orthogonal complement defined by ⟨(haff)⊥, (haff)∥⟩aff = 0. Then

haff = (haff)⊥ ⊕ (haff)∥ (3.28)

is a direct sum of vector spaces. The explicit representation for these subspaces can be obtained from the Lie bracket
[χe, haff] = [(0, A), (a, 0)] = (0, [A, a]) plus the property (2.2) that the centralizer of A in g is h. This determines

(haff)∥ = {(a, 0)|a ∈ h}, (haff)⊥ = {(a, 0)|a ∈ m}. (3.29)
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Since haff ≃ maff ≃ g as vector spaces, it will be convenient to also define

(maff)∥ = {(0, a)|a ∈ h}, (maff)⊥ = {(0, a)|a ∈ m}, (3.30)

whereby

maff = (maff)⊥ ⊕ (maff)∥. (3.31)

As a consequence of invariance of the Killing form with respect to ad(e), the Lie bracket structure (3.6) has the following
decomposition:

[(haff)∥, (haff)∥] ⊆ (haff)∥, [(haff)∥, (maff)∥] ⊆ (maff)∥, (3.32)

[(haff)∥, (haff)⊥] ⊆ (haff)⊥, [(haff)⊥, (maff)∥] ⊆ (maff)⊥, [(haff)∥, (maff)⊥] ⊆ (maff)⊥, (3.33)

[(haff)⊥, (haff)⊥] ⊆ (haff)∥, [(haff)⊥, (maff)⊥] ⊆ (maff)∥. (3.34)

Through these decompositions (3.28)–(3.31) and (3.32)–(3.34), the Maurer–Cartan equations (3.24)–(3.25) become

Dx(et )∥ + [ωx, (et )⊥] = 0, (3.35)

Dx(et )⊥ + [ωx, (et )∥] − [(ωt )⊥, e] = 0, (3.36)

Dx(ωt )∥ + [ωx, (ωt )⊥] = 0, (3.37)

Dx(ωt )⊥ − Dtωx + [ωx, (ωt )∥] = 0, (3.38)

in which the variables are represented by

(et )∥ = (0, h∥) ∈ (maff)∥, (et )⊥ = (0, h⊥) ∈ (maff)⊥, (3.39)

(ωt )∥ = (w∥, 0) ∈ (haff)∥, (ωt )⊥ = (w⊥, 0) ∈ (haff)⊥, (3.40)

ωx = (q, 0) ∈ (haff)⊥, (3.41)

where h∥, w∥ ∈ h and h⊥, w⊥, q ∈ m are functions of (x, t). The Lie brackets in these Eqs. (3.35)–(3.38) are straightforward
to compute using the representations (3.3) and (3.5). This yields

Dxh∥ + [q, h⊥] = 0, (3.42)

Dxh⊥ + [q, h∥] +
1
χ
[A, w⊥] = 0, (3.43)

Dxw∥ + [q, w⊥] = 0, (3.44)

Dxw⊥ − qt + [q, w∥] = 0, (3.45)

where all of these reduced Lie brackets sit in g.
The preceding developments, combined with Proposition 1, can be summarized as follows.

Theorem 2. In any affine Hermitian symmetric space aff(G,H) = (G⋊g)/G, with e and ω being a linear coframe and a linear
connection (3.20), there is a distinguished class of non-stretching curve flows γ⃗ (x, t) for which

e⌋γ⃗x =
1
χ
(0, A) ∈ (maff)∥ ≃ h, (3.46)

where A ∈ h is the complex-structure element (2.2)–(2.3). These curve flows have a G-parallel framing given by

ω⌋γ⃗x = (ψe
−1Dxψe, 0) = (q, 0) ∈ (maff)⊥ ≃ m, (3.47)

and

e⌋γ⃗t = (0, h∥ + h⊥) ∈ maff ≃ g, ω⌋γ⃗t = (ψe
−1Dtψe, 0) = (w∥ + w⊥, 0) ∈ maff ≃ g, (3.48)

where ψe(γ⃗ ) ∈ G. The equivalence group of the framing is G∥ = H ⊂ G, where H is the stabilizer group of A ∈ h, acting in
the adjoint representation. For such a framing, the frame structure equations take the form (3.42)–(3.45), which are invariant
under G∥.

Remark 2. The variables (3.39)–(3.41) in the frame structure equations have the following geometrical meaning: q
encodes the Cartan connection matrix of the G-parallel frame; h⊥ and h∥ respectively encode the motion of the curve
projected into the subspaces (3.30) of maff;w⊥+w∥ encodes the Cartan connection matrix of the evolution of the G-parallel
frame induced by the motion of the curve.

A geometrical interpretation of the algebraic property (3.46) distinguishing the curve flows γ⃗ (x, t) will be given in
Section 4.1.

Furthermore, as will be shown later, there is an explicit geometrical correspondence between the G-parallel frame
structure equations (3.42)–(3.45) and the isospectral flow equations (2.10)–(2.11), (2.13)–(2.14). This correspondence is
closely related to the Sym–Pohlmeyer construction.
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3.3. Bi-Hamiltonian structure and hierarchies of isospectral flows

From the general results [6] known for non-stretching curve flows in Riemannian symmetric spaces, the G-parallel
frame structure equations (3.42)–(3.45) turn out to encode a bi-Hamiltonian structure for the induced flows on the Cartan
connection-matrix variable q.

Introduce the variable

h⊥
:= ad(e)h⊥ =

1
χ
[A, h⊥] ∈ m (3.49)

and use Eqs. (3.42) and (3.44) to eliminate the variables

h∥ = χD−1
x [q, Jh⊥

], w∥ = −D−1
x [q, w⊥], (3.50)

where the property (2.3) that ad(A) = J is a complex structure on m has been used. Then the remaining equations (3.43)
and (3.45) become

w⊥ = χ2J (h⊥), (3.51)

qt = H(w⊥), (3.52)

where H is the operator

H = Dx − ad(q)D−1
x ad(q) (3.53)

and J is the conjugated operator

J = JHJ−1
= Dx − Jad(q)D−1

x ad(q)J−1. (3.54)

Theorem 3. The operator equations (3.51)–(3.52) on the Cartan connection-matrix variables q and w⊥ provide an equivalent
formulation of the G-parallel frame structure equations describing non-stretching curve flows γ⃗ (x, t) of the algebraic type (3.46)
in any affine Hermitian symmetric space aff(G,H) = (G⋊g)/G. In this formulation,H and J are a compatible pair of Hamiltonian
operators with respect to the m-valued flow variable q, and R = HJ−1 is a hereditary recursion operator. A curve flow γ⃗ (x, t)
is determined by specifying the variable h⊥(x, t), which yields the flow equation

1
χ2 qt = H(w⊥) = −R2(h⊥) (3.55)

for q(x, t). The curve flow equation as well as the Hamiltonian operators (and the recursion operator) are invariant under the
equivalence group G∥ = H ⊂ G of the G-parallel frame.

This result is a direct application of the general theorem in Ref. [6] on a parallel-frame formulation of non-stretching
curve flows in Riemannian symmetric spaces. The proof of that theorem involves showing that the pair of operators
arising in the flow equation in a parallel frame satisfy the conditions to be a bi-Hamiltonian pair, in particular, H gives
rise to a bilinear bracket that is skew and obeys the Jacobi identity, while J gives rise to a bilinear form that is skew and
closed. These conditions are proved to hold by using an extension of the standard theory of bi-Hamiltonian structures to
the setting of Lie algebra-valued variables. The general theory of recursion operators [28] then shows that the hereditary
property of R follows from its factorized form in terms of H and J .

Thus, a G-parallel frame encodes a natural bi-Hamiltonian structure H, J , along with a hereditary recursion operator
R. By Magri’s theorem, a hierarchy of bi-Hamiltonian flows can be produced by taking X = h⊥

⌋∂q to be the generator of
a symmetry of the Hamiltonian operators H, J .

There are two natural symmetries, consisting of phase rotations and translations, generated by

Xphas. = −Jq⌋∂q, (3.56)

Xtrans. = −qx⌋∂q, (3.57)

which respectively produce a hierarchy of flows on q starting from h⊥
= −Jq and h⊥

= −qx.
The first hierarchy is given by

1
χ2 qt = R2n(Jq), n = 0, 1, 2, . . . . (3.58)

Its root flow, for n = 0, is 1
χ2 qt = Jq. The next flow, for n = 1, is obtained by starting with R(Jq) = H(q) = qx, and so

R2(Jq) = R(qx) = H(J−1qx) = −Jqxx + ad(q)D−1
x (ad(q)Jqx), where ad(q)Jqx =

1
2 (ad(q)Jq)x was derived earlier. Hence, this

yields
1
χ2 qt = R2(Jq) = −Jqxx +

1
2ad(q)

2Jq, (3.59)

which is, up to scaling, the same as the isospectral NLS system (2.24). Note that this flow (3.59) has

h⊥
= −Jq, h∥ = 0, 1

χ2w⊥ = −Jqx, 1
χ2w∥ =

1
2ad(q)Jq. (3.60)
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Similarly, the second hierarchy is given by
1
χ2 qt = R2n(qx), n = 0, 1, 2, . . . , (3.61)

which has the root flow, for n = 0, is 1
χ2 qt = qx. The next flow is given by R2(qx) = R(−Jqxx +

1
2ad(q)

2Jq), which requires
several steps to simplify. The first term

− R(Jqxx) = −H(qxx) = −qxxx + ad(q)2qx (3.62)

follows from the use of D−1
x (ad(q)qxx) = [q, qx]. The second term is 1

2R(ad(q)2Jq) =
1
2H(J−1ad(q)2Jq) = −

1
2 J(ad(q)

2Jq)x +
1
2ad(q)D

−1
x (ad(q)Jad(q)2Jq). This expression can be simplified via the identity

Jad(q)2Jq = [J, ad(q)]ad(q)Jq + (ad(q)J)2q = −ad(Jq)2q, (3.63)

which holds by [J, ad(q)] = ad(Jq) and (ad(q)J)2q = ad(q)J[q, Jq] = 0 due to [q, Jq] ∈ h. First, note that the local
term in 1

2R(ad(q)2Jq) directly becomes −
1
2 J(ad(q)

2Jq)x =
1
2 (ad(Jq)

2q)x. Next, the nonlocal term in 1
2R(ad(q)2Jq) vanishes

by the following steps applied to ad(q)Jad(q)2Jq. On one hand, from the identity (3.63), consider ad(q)Jad(q)2Jq =

−ad(q)ad(Jq)2q = ad(q)[Jq, ad(q)Jq] = [ad(q)Jq, ad(q)Jq] + [Jq, ad(q)2Jq] = ad(Jq)ad(q)2Jq. On the other hand, by the same
steps used in proving the identity (3.63), note ad(q)Jad(q)2Jq = [ad(q), J]ad(q)2Jq + Jad(q)3Jq = −ad(Jq)ad(q)2Jq. Thus,
ad(q)Jad(q)2Jq = −ad(q)Jad(q)2Jq, which implies ad(q)D−1

x (ad(q)Jad(q)2Jq) = 0. Consequently, these steps give
1
2R(ad(q)2Jq) =

1
2 (ad(Jq)

2q)x. (3.64)

Combining the terms (3.62) and (3.64) thereby yields
1
χ2 qt = R2(qx) = −qxxx + ad(q)2qx +

1
2 (ad(Jq)

2q)x, (3.65)

which is, up to scaling, the same as the isospectral mKdV system (2.33). This flow (3.65) has

h⊥
= −qx, 1

χ
h∥ = −

1
2ad(q)Jq,

1
χ2w⊥ = −qxx −

1
2ad(q)

2Jq, 1
χ2w∥ = −ad(q)qx. (3.66)

In these two hierarchies (3.58) and (3.61), the respective root flows are related by the recursion operator R, since
R(Jq) = qx. Hence, the hierarchies can be merged to form a single intertwined hierarchy of flows given by

1
χ2 qt = Rn(Jq) := h⊥

(n), n = 0, 1, 2, . . . . (3.67)

In particular, the 0 flow is 1
χ2 qt = Jq = h⊥

(0) and the +1 flow is 1
χ2 qt = qx = h⊥

(1), while the +2 and +3 flows are precisely
the NLS flow (3.59) and the mKdV flow (3.65).

Remark 3. All of the higher flows in the hierarchy (3.67) can be viewed as higher symmetries X(n)
= h⊥

(n)⌋∂q, n ≥ 4, of
both the NLS flow and the mKdV flow.

The merged hierarchy (3.67) has the following Hamiltonian structure.

Theorem 4. Each flow in the hierarchy (3.67) for n ≥ 1 has a bi-Hamiltonian formulation
1
χ2 qt = H(δH (n)/δq) = J(δH (n+1)/δq), n = 1, 2, . . . (3.68)

where the Hamiltonians are given by the functionals

H (n)
=

1
n

∫
C
D−1
x ⟨Rn(Jq), q⟩ dx, n = 1, 2, . . . (3.69)

on the domain C = R or S1. For n ≥ 2, each flow has an additional Hamiltonian structure,
1
χ2 qt = E(δH (n−1)/δq), n = 2, 3, . . . (3.70)

where E = R2J is a third Hamiltonian operator which is compatible with the Hamiltonian operators H = RJ and J.

As a consequence, the NLS flow (3.59) and the mKdV flow (3.65) have the tri-Hamiltonian structures
1
χ2 qt = −Jqxx +

1
2 [q, [q, Jq]] = E(δH (1)/δq) = H(δH (2)/δq) = J(δH (3)/δq) (3.71)

and
1
χ2 qt = −qxxx + ad(q)2qx +

1
2 (ad(Jq)

2q)x = E(δH (2)/δq) = H(δH (3)/δq) = J(δH (4)/δq), (3.72)

which are given in terms of the Hamiltonians

H (1)
=

∫
C

1
2 ⟨q, q⟩m dx, (3.73)
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H (2)
=

∫
C

1
2 ⟨Jq, qx⟩m dx, (3.74)

H (3)
=

∫
C

1
2 ⟨qx, qx⟩m −

1
8 ⟨[q, Jq], [q, Jq]⟩m dx, (3.75)

H (4)
=

∫
C

1
2 ⟨Jqx, qxx⟩m −

3
8 ⟨[q, Jq], [q, qx]⟩m dx. (3.76)

Expression (3.69) for the Hamiltonians comes from a general scaling formula in Ref. [3] (see also Ref. [6,7]), with
x → eϵx, q → e−ϵq (ϵ ∈ R) being the scaling group. In the case n = 0, this formula leads to a trivial identity
(0)H (0)

=
∫
C D−1

x (0) dx = 0.
Correspondingly, the n = 0 flow has only a single Hamiltonian form, 1

χ2 qt = Jq = J(δH (1)/δq), and the n = 1 flow has
only a bi-Hamiltonian form, 1

χ2 qt = qx = H(δH (1)/δq) = J(δH (2)/δq), rather than a tri-Hamiltonian form. Nevertheless, it
is possible to view H(0) = Jq = −ad(q)A if D−1

x which appears in H is defined to contain a constant of integration given
by

D−1
x (0) = A. (3.77)

Proposition 2. In the hierarchy (3.67) of flows, the bi-Hamiltonian structure (3.68) can be extended to n = 0 with a trivial
Hamiltonian H (0)

= 0 if the Hamiltonian operator H is generalized by defining D−1
x to have a non-trivial cokernel (3.77). This

yields H(0) = Jq = h⊥

(0), which is the 0 flow. In a similar way, the tri-Hamiltonian structure (3.68) can be extended to n = 1
with a trivial Hamiltonian H (0)

= 0, whereby E(0) = RH(0) = R(Jq) = qx = h⊥

(1), which is the +1 flow.

As a final remark, there is a direct link between the Hamiltonians (3.69) and the variable h∥ given in terms of
h⊥ by Eq. (3.50). Specifically, consider Dx⟨A, h∥⟩g = χ⟨A, [q, ad(A)h⊥

]⟩g = χ⟨Jq, Jh⊥
⟩m = χ⟨q, h⊥

⟩m. This shows that
D−1
x ⟨h⊥

(n), q⟩m = ⟨A, h(n)
∥

⟩g, where

h(n)
∥

:= χD−1
x [q, ad(A)h⊥

(n)] (3.78)

based on Eq. (3.50). Hence the following relationship holds.

Remark 4. The Hamiltonians in the hierarchy (3.67) can be expressed as

H (n)
=

1
n

∫
C
⟨A, h(n)

∥
⟩g dx, n = 1, 2, . . . , (3.79)

where

h(n−2)
∥

= h∥, n ≥ 2 (3.80)

holds for the +n flow.

The +n flow in the hierarchy (3.67) for n ≥ 2 determines a non-stretching curve flow

γ⃗t = P⃗ (n−1)
⊥

, n = 2, 3, . . . (3.81)

arising from the soldering relation

e⌋P⃗ (n−1)
⊥

= h⊥ + h∥, n ≥ 2, (3.82)

with h⊥ and h∥ being given in terms of h⊥

(n−2) through Eqs. (3.49), (3.50), and (3.55). Note that the presence of R2

in Eq. (3.55) accounts for why h⊥ is related to h⊥

(n−2) rather than to h⊥

(n−1) or h
⊥

(n).
It will be useful geometrically to split the motion of the curve into components (γ⃗t )⊥ = P⃗ (n−1)

⊥
and (γ⃗t )∥ = P⃗ (n−1)

∥
at

every point along the curve. Then the ⊥ component is given by

e⌋P⃗ (n−1)
⊥

= h⊥ = χ J−1h⊥
= χ J−1h⊥

(n−2) = χR∗n−2(q), n ≥ 2, (3.83)

where

R∗
= J−1H = J−1(Dx − ad(q)D−1

x ad(q)) = (Dx − ad(Jq)D−1
x ad(Jq))J−1 (3.84)

is the adjoint of the recursion operator

R = (Dx − ad(q)D−1
x ad(q))J−1

= J−1(Dx − ad(Jq)D−1
x ad(Jq)). (3.85)

The tangential component is determined from the normal component by

e⌋P⃗ (n−1)
∥

= h∥ = −D−1
x (ad(q)h⊥) = −χD−1

x (ad(q)R∗n−2(q)), n ≥ 2. (3.86)

These relations (3.83) and (3.86) allow P (n−1) to be expressed in terms of γ⃗x and its x-covariant derivatives, as will be
shown explicitly in Section 4.
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3.4. Relationship to the Sym–Pohlmeyer construction

The Sym–Pohlmeyer construction of non-stretching curve flows uses the scaled arclength parameter s = χx as shown
by the relation (2.39). Thus, the tangent vector of γ⃗ (s, t) with respect to s is represented by e⌋γ⃗s = (0, A) in a G-parallel
frame. Consequently, the covariant derivative of a vector Y in aff(G,H) ≃ g with respect to γ⃗s has the representation

e⌋∇sY = (0, ∂sy + χad(q)y) (3.87)

with y = e⌋Y . These soldering relations correspond to the identifications provided by Ad(φ0) in the Sym–Pohlmeyer
construction, with φ0 = φ|λ=0 where φ(s, t, λ) is the G-valued spectral function. Specifically, if y = φ0Yφ0

−1 then
∇sY = (φ0

−1yφ0)s = φ0
−1(∂sy + [y,Q ])φ0 = φ0

−1(∂sy − ad(Q )y)φ0 using φ0 s = qφ0 from the linear isospectral system
(2.5) and (2.7), whereby

φ0(∇sY )φ0
−1

= ∂sy − ad(Q )y. (3.88)

Comparison of Eqs. (3.87) and (3.88) establishes the correspondence

Q = −χq. (3.89)

Likewise, the covariant derivative of a vector Y with respect to γ⃗t is given by

e⌋∇tY = (0, ∂ty + ad(w⊥ + w∥)y), (3.90)

while in the Sym–Pohlmeyer construction,

φ0(∇tY )φ0
−1

= ∂ty − ad(V (0))y. (3.91)

This yields the correspondence

V (0)
= −(w⊥ + w∥). (3.92)

Finally, a comparison of the flow vector γ⃗t itself in these two formulations e⌋γ⃗t = (0, h∥ + h⊥) and φ0γ⃗tφ0
−1

= V (1)

gives

V (1)
= h∥ + h⊥. (3.93)

Hence, the following correspondence holds.

Proposition 3. The G-parallel frame structure equations (3.42)–(3.45) and the isospectral flow equations (2.10)–(2.11),
(2.13)–(2.14) are related by the transformation

x = χs, q = −
1
χ
Q , w⊥ = −V (0)

m , w∥ = −V (0)
h , h⊥ = V (1)

m , h∥ = V (1)
h . (3.94)

The main advantage of the G-parallel frame formulation over the Sym–Pohlmeyer construction is that it encodes an
explicit bi-Hamiltonian structure as well as a recursion operator. These structures are hidden in the Lax pair approach
underlying the Sym–Pohlmeyer construction.

The transformation (3.94) now leads to the following important correspondence result.

Theorem 5. The merged hierarchy (3.67) of tri-Hamiltonian flows on the Hasimoto variable q coincides with the hierarchy
of isospectral flows (2.32) on the isospectral potential Q under the transformation (3.94). In particular, the +2 and +3 flows
(3.59) and (3.65) respectively correspond to the H-invariant NLS and mKdV equations (2.24) and (2.33). Moreover, the non-
stretching curve flow (3.81) determined by the +n flow for n ≥ 2 coincides with the Sym–Pohlmeyer curve flow associated
with the corresponding isospectral flow.

In this correspondence, the operators (3.53) and (3.54) which provide the bi-Hamiltonian structure are related to the
isospectral recursion operator (2.31) by

HJ = −R2 (3.95)

up to an overall scaling factor.

3.5. Covariants of non-stretching curves

Each of the isospectral flow equations (3.67) is invariant under rigid (constant) transformations Ad(G∥) on the
dynamical variable q(x, t), where G∥ = H ⊂ G is the equivalence group of the G-parallel frame. The explicit form of
these transformations is given by

q → Ad(g)q = gqg−1, g ∈ H ⊂ G. (3.96)
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Since the Cartan connection matrix of the G-parallel frame is represented by q, this variable encodes differential
covariants of the curve γ⃗ (x), namely, q is invariantly defined by γ⃗ (x) up to the rigid group action (3.96). In particular,
once any G-parallel frame is fixed through the soldering relation (3.13) by specifying an orthonormal basis for g ≃ maff,
the components of q in this basis are scalar covariants, and likewise the components of any x-derivatives of q are scalar
differential covariants. These covariants carry geometrical information related to curvature invariants of the curve γ⃗ (x).
Specifically, any scalar constructed only in terms of q and x-derivatives of q by use of the Lie bracket and the inner product
on g will be a curvature (differential) invariant.

This will be illustrated more fully in Section 4 when the geometrical curve flows arising from the isospectral flows
(3.67) are obtained.

4. Generalized vortex filament equations and Heisenberg spin models

We will now derive the geometric curve flows defined through Theorem 3 for the hierarchy of isospectral flows
(3.67) given in Theorem 1. From Theorem 5, these curve flows coincide with Sym–Pohlmeyer curves after a scaling of
the arclength parameter. In particular, the resulting curve flows that arise from the NLS and mKdV isospectral flows will
be shown to be close analogs of the equations in R3 for the motion of a vortex filament and its axial generalization, which
will be formulated using the tangent vector, the normal vector, and a generalized bi-normal vector along the curves. We
will then show how these generalized vortex filament equations give rise to associated Heisenberg spin models for the
tangent vector of the underlying curve flows. Finally, we will present a geometrical recursion operator for the generalized
vortex filament equations as well as the associated Heisenberg spin models.

The derivation will use only some of the structure of an affine Hermitian symmetric space aff(G,H). Specifically, as a
manifold, aff(G,H) is isomorphic to a Euclidean space of dimension dim(g), namely aff(G,H) ≃ Rdim(g); and aff(G,H) ≃ g
carries the Lie bracket structure of a Hermitian symmetric Lie algebra.

The role of a G-parallel framing will be seen to be essential in providing a simple geometrical way to relate the
isospectral flow equations to geometrical vectors arising from curves in aff(G,H). Looked at another way, the Cartan
connection-matrix variable q provides a generalized Hasimoto variable, such that the relationship between the isospectral
flows on q and the geometric curve flows is a generalized Hasimoto transformation.

4.1. Geometric preliminaries

Given a curve γ⃗ (x) in aff(G,H), the tangent vector is γ⃗x, and hence ∇x = g(γ⃗x, ∇⃗) is the directional derivative along
the curve. For G-parallel framed curves of algebraic type (3.46), the directional derivative ∇x of vector fields corresponds
to the Lie-algebra element in g given by the soldering relation (3.17):

e⌋∇xY = Dx(e⌋Y ) + [(q, 0), e⌋Y ] = Dx(0, y) + [(q, 0), (0, y)] = (0, ∂xy + ad(q)y), (4.1)

where y = e⌋Y is the Lie-algebra element corresponding to the vector Y . In particular,

e⌋∇xγ⃗x =
1
χ
(0, [q, A]) = −

1
χ
(0, Jq), (4.2)

e⌋∇2
x γ⃗x = −

1
χ
(0, Jqx + [q, Jq]), (4.3)

and so on for higher derivatives. Namely, ∇x corresponds to ∂x + ad(q).
Similarly, the soldering of the flow vector γ⃗t is obtained from the representation (3.39) and the expressions

(3.49)–(3.50):

e⌋γ⃗t = (0, h∥ + h⊥) = −χ (0, Jh⊥
− D−1

x [q, Jh⊥
]). (4.4)

Any vector in aff(G,H) has an action on the vector space aff(G,H) through the Lie bracket on g. This action will be
denoted by adg(·). For vectors Y , Z ∈ aff(G,H), let e⌋Y = (0, y) and e⌋Z = (0, z) in the representation (3.3). Then adg(·) is
given by

e⌋adg(Z)Y := (0, [z, y]) (4.5)

and consequently

e⌋adg(Z)2Y := (0, [z, [z, y]]). (4.6)

In particular, T has the action

e⌋adg(γ⃗x)Y :=
1
χ
(0, [A, y]) =

1
χ
(0, Jy), e⌋adg(γ⃗x)2Y :=

1
χ2 ([0, J

2y]) = −
1
χ2 (0, (y)m), (4.7)

where (y)m denotes the projection of y into m. If Y belongs to the subspace in aff(G,H) corresponding to m in g, namely
y ∈ m, then there is an inverse for the action of T:

e⌋adg(γ⃗x)−1Y = χ (0, J−1y) = −χ (0, Jy) (4.8)

since J2 = −idm.
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The action (4.7) of T provides a geometrical way to characterize the algebraic property (3.46) distinguishing the curve
flows γ⃗ (x, t) in Theorem 2.

Remark 5. Non-stretching curve flows γ⃗ (x, t) of algebraic type (3.46) have the geometrical characterization that the
action of adg(γ⃗x)2 on Tγ⃗ aff(G,H) ≃ aff(G,H) ≃ m⊕h has eigenvalues −1 and 0 on the respective subspaces in Tγ⃗ aff(G,H)
corresponding to m and h.

4.2. Tangent and normal vectors, and curvatures

The x-derivative of the tangent vector

T = γ⃗x (4.9)

along the curve γ⃗ (x) defines the principal normal vector ∇xT = ∇xγ⃗x. The normal vector of the curve γ⃗ (x) is then given
by

N =
1
κ
∇xT, (4.10)

where

κ = g(N,∇xT) (4.11)

defines the principal curvature scalar of the curve. This scalar is related to the norm of q by κ2
= g(∇xT,∇xT) =

⟨e⌋∇xγ⃗x, e⌋∇xγ⃗x⟩aff =
1
χ2 ⟨(0, Jq), (0, Jq)⟩aff = −

1
χ2 K (Jq, Jq) = −

1
χ2 K (q, q). Hence,

|κ| =
1
χ

√
−K (q, q) (4.12)

which is a direct generalization of the relationship between the Hasimoto variable and the principal curvature for
non-stretching curves in R3.

A vector that is orthogonal to both T and N can be constructed algebraically by using adg(T)−1. Note

g(adg(T)−1N, T) = 0, g(adg(T)−1N,N) = 0, g(adg(T)−1N, adg(T)−1N) = 1 (4.13)

due to ad-invariance of the inner product on aff(G,H). Therefore,

B := adg(T)−1N (4.14)

can be viewed as defining a bi-normal vector. The vectors T,N,B correspond to the Lie-algebra elements

e⌋T =
1
χ
(0, A), (4.15)

e⌋N = −
1
κχ

(0, Jq), (4.16)

e⌋B =
1
κ
(0, J2q) = −

1
κ
(0, q). (4.17)

This triple of vectors is a direct generalization of the vectors in a Frenet frame for non-stretching curves in R3. However,
in general T,N,B do not span all of g ≃ Rdim(g).

For comparison with the Sym–Pohlmeyer construction, we can use Proposition 1 to obtain an explicit identification
between vectors Y in Txaff(G,H) ≃ aff(G,H) and Lie-algebra elements e⌋Y in maff ≃ g. Specifically, let e⌋Y = (0, y), where
y ∈ g. Then we have (0, y) = (0,Ad(ψe

−1)Y ) with ψe(x) ∈ G, whereby

Y ∈ aff(G,H)
≃ Ad(ψe)y ∈ g.

(4.18)

Moreover, derivatives ∇x of vector fields Y in aff(G,H) can be identified with derivatives Dx of functions Ad(ψe)y in g:

∇xY ∈ aff(G,H)
≃ Dx(Ad(ψe)y) ∈ g.

(4.19)

This is established by noting, on one hand, e⌋∇xY = (0,Ad(ψe
−1)∇xY ) from Eq. (4.18), while on the other hand,

e⌋∇xY = (0, ∂xy + ad(ψe
−1∂xψe)y) = (0,Ad(ψe

−1)Dx(Ad(ψe)y)) through Eq. (4.1) combined with Eq. (3.47).
Thus, the vectors T,N,B can be represented as

T ≃
1
χ
Ad(ψe)A, N ≃ −

1
κχ

Ad(ψe)Jq, B ≃ −
1
κ
Ad(ψe)q. (4.20)

We will now derive the geometrical curve flows defined by the NLS and mKdV isospectral flows.
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4.3. NLS curve flow and generalized vortex filament equation

The NLS isospectral flow (3.59) is generated by h⊥
= −Jq, with h∥ = 0, as given by Eq. (3.60). Thus, from expression

(4.4),

e⌋γ⃗t = −χ (0, q). (4.21)

Now apply the relation (4.8) with Y = γ⃗xx:

e⌋adg(γ⃗x)−1
∇xγ⃗x = −(0, q). (4.22)

This expression directly yields

e⌋γ⃗t = χe⌋adg(γ⃗x)−1
∇xγ⃗x (4.23)

which gives the equation of motion
1
χ
γ⃗t = adg(γ⃗x)−1

∇xγ⃗x. (4.24)

After scaling t , this equation of motion can be expressed as

γ⃗t = κadg(T)−1N = κB (4.25)

in terms of the tangent vector, normal vector, and the principal curvature scalar.
Hence the NLS isospectral flow corresponds to a bi-normal equation of motion (4.25) for a curve γ⃗ in aff(G,H). This

geometric flow equation is analogous to the vortex filament equation in R3 [19]. In the form (4.24), it coincides with the
Sym–Pohlmeyer curve flow (2.43) after the scaling (2.39) of x.

4.4. mKdV curve flow and generalized vortex filament axial equation

The mKdV isospectral flow (3.65) is generated by h⊥
= −qx. This flow has h∥ = −χ 1

2 [q, Jq], from Eq. (3.66). Thus

e⌋γ⃗t = χ (0, Jqx −
1
2 [q, Jq]). (4.26)

To relate this expression to x-derivatives of γ⃗x, apply the relation (4.6) with Y = ∇
2
x γ⃗x and Z = γ⃗x: e⌋adg(γ⃗x)2∇2

x γ⃗x =
1
χ3 (0, Jqx). Then this expression can be combined with expression (4.3) to get

e⌋(1 + χ2adg(γ⃗x)2)∇2
x γ⃗x = −

1
χ
(0, [q, Jq]). (4.27)

Hence,

e⌋γ⃗t =
1
2χ

2e⌋(1 + 3χ2adg(γ⃗x)2)∇2
x γ⃗x (4.28)

which gives the equation of motion
1
χ2 γ⃗t =

1
2 (1 + 3χ2adg(γ⃗x)2)∇2

x γ⃗x. (4.29)

After scaling t , this equation of motion can be expressed as

γ⃗t =
1
2 (1 + 3χ2adg(T)2)∇x(κN) (4.30)

in terms of the tangent vector, normal vector, and the principal curvature scalar.
There is an alternative expression for the equation of motion (4.30). Consider the relation (4.6) with Y = γ⃗x and

Z = ∇xγ⃗x:

e⌋adg(∇xγ⃗x)2γ⃗x =
1

√
χ2

3 (0, [Jq, [Jq, A]]) = −
1

√
χ2

3 (0, [q, Jq]). (4.31)

Then this expression combined with expression (4.3) yields

e⌋γ⃗t = χ2e⌋(−∇
2
x γ⃗x +

3
2χ

2adg(∇xγ⃗x)2γ⃗x). (4.32)

After scaling t , this equation of motion can be expressed as

γ⃗t = −∇x(κN) +
3
2χ

2κ2adg(N)2T, κ2
= g(∇xT,∇xT) (4.33)

in terms of the tangent vector, normal vector, and the principal curvature scalar.
Thus the mKdV isospectral flow corresponds to the geometrical equation of motion (4.33) for a curve γ⃗ in aff(G,H).

This flow equation is analogous to the equation in R3 describing axial flow of vortex filament [18]. When it is expressed
in the form

γ⃗t = −∇
2
x γ⃗x +

3
2χ

2adg(∇xγ⃗x)2γ⃗x, (4.34)

this coincides with the Sym–Pohlmeyer curve flow (2.44) after the scaling (2.39) of x.
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4.5. Spin vector models in g

Any geometric non-stretching curve flow γ⃗t = P⃗ , with the vector P⃗ given in terms of γ⃗x and its x-covariant derivatives,
induces an associated flow on the tangent vector T = γ⃗x:

Tt = ∇xP⃗, |T| = 1, (4.35)

where, for notational ease,

Yt := ∇tY , Yx := ∇xY , Y · X := g(Y , X), |Y |
2

:= g(Y , Y ). (4.36)

This induced flow equation (4.35) can be naturally viewed as defining a spin vector model, since T has a unit norm that
is preserved in the flow.

The spin vector model arising from the NLS curve flow (4.25) is given by

Tt = −adg(T)Txx, |T| = 1. (4.37)

This equation describes a generalized Heisenberg spin model.
The mKdV curve flow (4.33) yields the spin vector model

Tt = −Txxx + 3χ2adg(Txx)adg(Tx)T, |T| = 1, (4.38)

after the identity adg(T)[Tx, Txx] = 0 has been used.

4.6. Recursion structure for geometric curve flow equations and spin vector models in g

Theorems 3 and 5 yield a hierarchy of geometric non-stretching curve flows, starting from generalized vortex filament
equation (4.25). This hierarchy inherits a geometric recursion operator from the isospectral recursion operator (3.85).

Recall from Eqs. (3.81), (3.83), (3.86) that each curve flow γ⃗t = P⃗ (n−1), n = 2, 3, . . ., in the hierarchy is determined by
the variable h⊥ = e⌋P⃗ (n−1)

⊥
giving the motion of the curve projected into the subspace in aff(G,H) corresponding to m ⊂ g.

A recursion operator on this variable arises from its relationship (3.49) to the variable h⊥ that determines the isospectral
flow corresponding to the curve flow. Specifically, consider a variation δh⊥

= R(h⊥). The variation of the relation (3.49)
yields δh⊥ = −Jδh⊥

= −JR(h⊥) = −J−1HJ(h⊥) = R∗(h⊥), where R∗
= J−1H is the adjoint of the isospectral recursion

operator R. This relationship shows that R∗ acts as a recursion operator on h⊥. Then the soldering equation

R∗(h⊥) = e⌋Rγ⃗ (P⃗⊥) (4.39)

determines a corresponding recursion operator on the vector P⃗⊥.
The explicit geometric form of this recursion operator Rγ⃗ can be derived from expression (3.84) for R∗ as follows.

ConsiderR∗(h⊥) = (Dx−ad(Jq)D−1
x ad(Jq))J−1h⊥. First, the local term inR∗(h⊥) can be expressed as Dx(J−1h⊥) = J−1Dxh⊥ =

J−1(Dxh⊥ + ad(q)h⊥), since ad(q)h⊥ belongs to h ⊂ g which is annihilated by J . Hence,

Dx(J−1h⊥) = e⌋(adg(γ⃗x)−1
∇xP⃗⊥) (4.40)

using the soldering relation (4.8). Next, the nonlocal term in R∗(h⊥) can be expressed as −ad(Jq)D−1
x (ad(Jq)J−1h⊥) =

−ad(Jq)h∥ through the relation (3.42) between h∥ and h⊥, combined with the identity ad(Jq)J−1h⊥ = −ad(q)h⊥ due to
the properties of J . This yields Dxh∥ = ad(Jq)J−1h⊥ = e⌋(−adg(γ⃗xx)adg(γ⃗x)−1P⃗⊥) by the soldering relations (4.2) and (4.8),
while Dxh∥ = (Dxh∥ + ad(q)h∥)h = e⌋∇h

x P⃗∥, with h∥ = e⌋P⃗∥. Here

∇
h
x = (1 + adg(γ⃗x)2)∇x (4.41)

denotes the projection of ∇x into the subspace in aff(G,H) corresponding to h ⊂ g. Consequently, ∇
h
x P⃗∥ = −adg(γ⃗xx)

adg(γ⃗x)−1P⃗⊥ which yields

P⃗∥ = −(∇h
x )

−1(adg(γ⃗xx)adg(γ⃗x)−1P⃗⊥). (4.42)

Hence,

− ad(Jq)D−1
x ad(Jq)J−1h⊥ = e⌋(adg(γ⃗xx)P⃗∥) = e⌋(−adg(γ⃗xx)(∇h

x )
−1(adg(γ⃗xx)adg(γ⃗x)−1P⃗⊥)). (4.43)

Combining the nonlocal term (4.43) and the local term (4.40) now yields

R∗(h⊥) = e⌋(adg(γ⃗x)−1
∇xP⃗⊥ − adg(γ⃗xx)(∇h

x )
−1(adg(γ⃗xx)adg(γ⃗x)−1P⃗⊥)), (4.44)

and thus

Rγ⃗ = adg(γ⃗x)−1
∇x − adg(γ⃗xx)(∇h

x )
−1adg(γ⃗xx)adg(γ⃗x)−1 (4.45)

gives the corresponding geometric recursion operator.
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A similar derivation produces a recursion operator for the hierarchy of spin vector models arising from the hierarchy
of geometric non-stretching curve flows.

Each spin vector model Tt = ∇xP⃗ (n−1), n = 2, 3, . . ., in the hierarchy is determined by the variable e⌋∇xP⃗ (n−1)
=

(Dx + ad(q))(h⊥ + h∥). By means of the frame structure equations (3.42)–(3.43) and (3.49), this variable can be expressed
as

e⌋∇xP⃗ (n−1)
= Dxh⊥ + ad(q)h∥ = −

1
χ
Jw⊥ = −χR(h⊥) (4.46)

on which R itself acts as a recursion operator. The geometric form of R can be obtained through the soldering equation

R(h⊥) = e⌋RT(P⃗⊥), (4.47)

where P⃗⊥ is a vector defined by e⌋P⃗⊥
= h⊥ in analogy to P⃗⊥. Now consider R(h⊥) = J−1(Dx − ad(Jq)D−1

x ad(Jq))h⊥. The
local term in R(h⊥) can be expressed as J−1Dxh⊥

= J−1(Dxh⊥
+ ad(q)h⊥), and hence,

J−1Dxh⊥
= e⌋(adg(T)−1

∇xP⃗⊥) (4.48)

similarly to the derivation of Eq. (4.40). Likewise, the nonlocal term in R(h⊥) can be expressed as −J−1ad(Jq)D−1
x (ad(Jq)h⊥)

= J−1ad(Jq)h∥, which yields Dxh∥ = −ad(Jq)h⊥
= e⌋(adg(γ⃗xx)P⃗⊥), while Dxh∥ = (Dxh∥ + ad(q)h∥)h = e⌋∇h

x P⃗∥ as before.
Hence,

− J−1ad(Jq)D−1
x ad(Jq)h⊥

= e⌋(−adg(T)−1adg(Tx)(∇h
x )

−1(adg(Tx)P⃗⊥)). (4.49)

Combining the two terms (4.48) and (4.49) now yields

R(h⊥) = e⌋adg(T)−1(∇xP⃗⊥
− adg(Tx)(∇h

x )
−1(adg(Tx)P⃗⊥)), (4.50)

and thus

RT = adg(T)−1(∇x − adg(Tx)(∇h
x )

−1adg(Tx)) (4.51)

gives the corresponding geometric recursion operator.
Now observe that an x-translation generated by Xtrans. = −γ⃗x⌋∂γ⃗ = −Tx⌋∂T is a symmetry of the recursion operators

Rγ⃗ and RT. Applying these respective operators to the corresponding vectors γ⃗x and Tx yields

Rγ⃗ (γ⃗x) = adg(γ⃗x)−1γ⃗xx, (4.52)

RT(Tx) = adg(T)−1Txx, (4.53)

which are precisely the righthand sides of the generalized vortex filament equation (4.25) and the associated Heisenberg
spin model (4.37). This leads to the following result.

Theorem 6. The hierarchy of isospectral flows (3.67), with n ≥ 1, on the Hasimoto variable q corresponds to the hierarchy
of geometric non-stretching curve flows

(γ⃗t )⊥ = P⃗ (k)
⊥

= Rk
γ⃗ (γ⃗x), |γ⃗x| = 1, k = 0, 1, 2, . . . (4.54)

and the associated hierarchy of spin vector models

Tt = P⃗⊥

(k) = Rk
T(Tx), |T| = 1, k = 0, 1, 2, . . . , (4.55)

with k = n− 1 ≥ 0, starting from (γ⃗t )⊥ = P⃗ (0)
⊥

= γ⃗x and Tt = P⃗⊥

(0) = Tx, where Rγ⃗ and RT are hereditary recursion operators
(4.45) and (4.51). In particular, the k = 1 curve flow and associated spin vector model are respectively given by the generalized
vortex filament equation (4.25) and associated Heisenberg spin model (4.37), which correspond to the n = 2 isospectral flow
given by the H-invariant NLS equation (3.59) on the Hasimoto variable q.

The hereditary property of the geometric recursion operators Rγ⃗ and RT can be established from the general theory
of recursion operators [28] by noting that the isospectral recursion operator R is hereditary due to its factorized form
(3.85) in terms of the pair of compatible Hamiltonian operators J and H.

Remark 6. The hierarchy (4.54) describes the motion of the curves γ⃗ (x, t) projected into the subspace in aff(G,H)
corresponding to m ⊂ g. The motion in the full space aff(G,H) is given by

γ⃗t = P⃗ (k)
⊥

+ P⃗ (k)
∥
, P⃗ (k)

∥
= −(∇h

x )
−1(adg(γ⃗xx)adg(γ⃗x)−1P⃗ (k)

⊥
), k = 0, 1, 2, . . . , (4.56)

which is obtained from Eq. (4.42) relating P⃗∥ to P⃗⊥. This hierarchy (4.56) of non-stretching curve flows is related to the
hierarchy (4.55) of spin vector models by

P⃗⊥

(k) = ∇x(P⃗
(k)
⊥

+ P⃗ (k)
∥

). (4.57)

Remark 7. Since both Rγ⃗ and RT are hereditary, all of the higher curve flows and spin vector models in the hierarchies
(4.55) and (4.56) can be viewed as higher symmetries X(k)

= P⃗ (k)
⌋∂γ⃗ = P⃗⊥

(k)⌋∂T, k ≥ 2, of the generalized vortex filament
equation (4.25) and the associated Heisenberg spin model (4.37).
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5. Tri-Hamiltonian structures

We will now show that the geometric curve flows and the associated spin vector models obtained in Theorem 6 have
a natural tri-Hamiltonian structure. This structure arises from factorization of the geometric recursion operators that
generate the hierarchies, and it can be understood as a geometrical version of the tri-Hamiltonian form (3.68) of the
corresponding isospectral flows.

To begin, recall that the isospectral recursion operator (3.85) has the factorized form R = HJ−1 with H and J being
compatible Hamiltonian operators with respect to the Hasimoto variable q. In general, a linear operator D is a Hamiltonian
operator if it is skew and has vanishing Schouten bracket. A concrete formulation of these two properties in the present
context of Lie-algebra valued variables is stated in Ref. [6], generalizing the standard formulation for real variables given
in Ref. [28] using the calculus of multi-vectors.

It will turn out to be simplest to start first by considering the spin vector models (4.55) and afterwards return to
the geometric non-stretching curve flows (4.56), because of the simple form of the soldering relation (4.47) between the
isospectral recursion operator R and the spin vector recursion operator RT.

5.1. Tri-Hamiltonian form of generalized spin vector models

In the context of spin vector models (4.55), the counterpart of the operator J is given by

JT = adg(T). (5.1)

This operator has the algebraic characterization that χ JT is like a square-root of the projection operator Pm onto the
subspace in aff(G,H) corresponding to m ⊂ g:

χ2J2T = −Pm, P2
m = Pm, Pmm = m, Pmh = 0. (5.2)

It is straightforward to prove that JT is a Hamiltonian operator with respect to the spin vector variable T by using a
geometrical version of the method used in Ref. [6] to show that H is a Hamiltonian operator with respect to the Hasimoto
variable q. The general theory of Hamiltonian operators [28] then shows that RTJT := HT will be a compatible Hamiltonian
operator, where RT is the hereditary recursion operator (4.51). This yields

HT = −adg(T)(∇x − adg(Tx)(∇h
x )

−1adg(Tx))adg(T). (5.3)

For writing down the Hamiltonian structure for the hierarchy of spin vector models in Theorem 6, it will be useful to
introduce some additional spin vector operators. Firstly, ∇⃗h and ∇⃗

m will be the respective projections of the contravariant
derivative ∇⃗ as defined by X · ∇⃗

h
= (1 + adg(T)2)(X · ∇⃗) and X · ∇⃗

m
= −adg(T)2(X · ∇⃗), for all vectors X ∈ aff(G,H).

Secondly, ad∗

g : g → ∧
2g will be the skew tensor associated with the adjoint operator adg : g → End(g) as defined by

⟨ad∗

g(X), Y ∧ Z⟩ = ⟨Y , adg(X)Z⟩, for all vectors X, Y , Z ∈ aff(G,H).
Now, from Theorem 4, the following main result is obtained.

Theorem 7. The hierarchy of spin vector models (4.55) arising from the isospectral flow hierarchy (3.67) has a tri-Hamiltonian
structure. For k ≥ 2, this structure is given by

Tt = JT(δH (k)/δT) = HT(δH (k−1)/δT) = ET(δH (k−2)/δT), k = 2, 3, . . . , (5.4)

where ET = RTHT is a third Hamiltonian operator compatible with JT and HT, and where the Hamiltonians are given by the
functionals

H (k)
=

1
k

∫
C
D−1
x (Rk

T(Tx) · (adg(T)Tx)) dx, k = 1, 2, . . . (5.5)

and

H (0)
=

∫
C
ξ⃗ (T) · Tx dx (5.6)

on the domain C = R or S1. Here ξ⃗ (T) is any vector function in aff(G,H) satisfying

∇⃗
m

∧ ξ⃗ = ad∗

g(T). (5.7)

For k = 1, the tri-Hamiltonian structure consists of

Tt = JT(δH (1)/δT) = HT(δH (0)/δT) = ET(δH0/δT) (5.8)

with H0 = const. being a trivial Hamiltonian, and where ∇
h
x is generalized to have a non-trivial cokernel

(∇h
x )

−1(0) = −adg(T). (5.9)
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Proof. The first two Hamiltonian structures (5.4) for k ≥ 2 come from the Hamiltonian form of the corresponding
isospectral flows in Theorem 4 by using a derivation similar to that for the geometric recursion operators in Theorem 6.

The third Hamiltonian structure (5.4) for k ≥ 2 arises from the property

δH (0)/δT = adg(T)−1Tx (5.10)

for the Hamiltonian (5.6). This is shown by considering an arbitrary variation of ξ⃗ (T) · Tx. First, the variation of ξ⃗ (T) is
given by δξ⃗ (T) = ∇δTξ⃗ (T) = (δT · ∇⃗)ξ⃗ (T), and hence Tx · δξ⃗ (T) = g(δT ⊗ Tx, ∇⃗ ξ⃗ (T)). Next, the variation of Tx is given
by δTx = ∇xδT, and thus ξ⃗ (T) · δTx = −δT · ∇xξ⃗ (T) modulo a total x-derivative, where ∇xξ⃗ (T) = (Tx · ∇⃗)ξ⃗ (T). Hence
ξ⃗ (T) · δTx = −g(Tx ⊗ δT, ∇⃗ ξ⃗ (T)). Combining these variations then yields

δ(ξ⃗ (T) · Tx) = g(δT ∧ Tx, ∇⃗ ξ⃗ (T)) = g(δT ⊗ Tx, ∇⃗ ∧ ξ⃗ (T)), (5.11)

and consequently, by using Eq. (5.7),

δ(ξ⃗ (T) · Tx) = g(δT ⊗ Tx, ad∗

g(T)) = −g(δT, adg(T)Tx), (5.12)

which establishes the result (5.10).
For k = 1, the third Hamiltonian structure (5.8) follows from

HT(0) = adg(T)adg(Tx)(∇h
x )(0) = −adg(T)2Tx = Tx, (5.13)

whereby ET(0) = RT(Tx) = adg(T)−1Txx is equal to HT(adg(T)−1Tx) = −adg(T)∇x(Tx) = adg(T)−1Txx.
Note that the generalization (5.9) of ∇

h
x is well-defined because T belongs to the kernel of this operator. Specifically,

as shown by e⌋Tx = −
1
χ
(0, Jq) from Eqs. (4.10) and (4.16), the vector ∇xT = Tx belongs to the subspace in aff(G,H) ≃ g

corresponding to m ⊂ g, and thus ∇
h
x T = PhTx = 0. Here Ph = id − Pm is the projection operator onto the orthogonal

subspace in aff(G,H) ≃ g corresponding to h ⊂ g, where Pm is the projection operator (5.2). □

As a result, the general Heisenberg spin model (4.37) has the tri-Hamiltonian form

Tt = adg(T)−1Txx = JT(δH (1)/δT) = HT(δH (0)/δT) = ET(0). (5.14)

The second and third Hamiltonian structures presented here appear to be new.
In contrast, the higher-order spin vector model (4.38) has the tri-Hamiltonian form

Tt = −Txxx + 3χ2adg(Txx)adg(Tx)T = JT(δH (2)/δT) = HT(δH (1)/δT) = ET(δH (0)/δT), (5.15)

which holds without needing the generalized cokernel (5.9).
A useful remark is that the Hamiltonians (5.5) in these spin vector models for k ≥ 2 correspond to the Hamiltonians

(3.69) in the isospectral hierarchy with q and its x-derivatives expressed in terms of T and its x-derivatives through the
soldering relations (4.15), (4.7), and (4.1). In particular, the first few Hamiltonians are explicitly given by

H (1)
=

∫
C

1
2 |Tx|

2 dx, (5.16)

H (2)
=

∫
C

1
2Txx · (adg(T)Tx) dx, (5.17)

H (3)
=

∫
C

1
2 |Txx|

2
−

5
8 |adg(Tx)2T|

2
dx, (5.18)

H (4)
=

∫
C

1
2 (adg(T)Txx) · Txxx +

7
8 (adg(Tx)2T) · (adg(Tx)Txx) dx. (5.19)

A direct derivation of all of the spin vector Hamiltonians H (k) for k ≥ 1 can be given by applying a general scaling formula
in Ref. [3] (see also Ref. [6,7]), with x → eϵx, T → T (ϵ ∈ R) being the scaling group. This formula is not applicable
for k = 0 because the spin vector Hamiltonian H (0) is scaling invariant. Instead, H (0) can be obtained by using a general
homotopy formula in Ref. [7,11] (see also Ref. [6]). A more explicit expression for H (0) will be derived in Section 6.

5.2. Tri-Hamiltonian form of generalized vortex filament equations

It is straightforward to show that neither adg(γ⃗x) nor ∇x = γ⃗x · ∇⃗ are Hamiltonian operators for the geometric non-
stretching curve flows (4.56), and so the previous steps used to obtain a pair of compatible Hamiltonian operators for
spin vector models will not work.

Instead, the spin vector Hamiltonian operators JT and HT can be transformed into corresponding operators Jγ⃗ and Hγ⃗

via the relation T = ∇xγ⃗ , which will provide a pair of compatible Hamiltonian operators for geometric non-stretching
curve flows.
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Lemma 1. (i) For any Hamiltonian functional H,
δH
δT

= −∇
−1
x
δH
δγ⃗

(5.20)

is a variational identity. (ii) If DT is a Hamiltonian operator with respect to T, then

Dγ⃗ = −∇
−1
x DT∇

−1
x (5.21)

is a Hamiltonian operator with respect to γ⃗ .

Proof. Consider an arbitrary variation δT = ∇xδγ⃗ . Then for any Hamiltonian H , since δH = (δH/δγ⃗ ) ·δγ⃗ = (δH/δT) ·δT =

(δH/δT) · ∇xδγ⃗ holds modulo a total x-derivative, this directly yields the variational identity (5.20) after integration by
parts. Now suppose that DT is Hamiltonian operator with respect to T, and consider Tt = DT(δH/δT). Use of the previous
variational identity combined with Tt = ∇xγ⃗t gives γ⃗t = Dγ⃗ (δH/δγ⃗ ), where Dγ⃗ is the operator (5.21). The proof that this
operator is Hamiltonian can be shown to reduce to the proof that DT is a Hamiltonian operator, analogously to a canonical
transformation, via T = ∇xγ⃗ . □

As a result, the Hamiltonian operators JT and HT give rise to the corresponding Hamiltonian operators

Jγ⃗ = −∇
−1
x adg(γ⃗x)∇−1

x , (5.22)

Hγ⃗ = ∇
−1
x adg(γ⃗x)(∇x − adg(γ⃗xx)(∇h

x )
−1adg(γ⃗xx))adg(γ⃗x)∇−1

x . (5.23)

These two Hamiltonian operators (5.22) and (5.23) are compatible, since JT and HT are compatible.
Now the Hamiltonian structure for the hierarchy of non-stretching curve flows in Theorem 6 can be obtained from the

Hamiltonian form of the corresponding isospectral flows in Theorem 4. The proof is the same as that of Theorem 7.

Theorem 8. The hierarchy of geometric non-stretching curve flows (4.54) in aff(G,H) arising from the isospectral flow
hierarchy (3.67) has a tri-Hamiltonian structure. For k ≥ 2, this structure is given by

(γ⃗t )⊥ = Jγ⃗ (δH (k)/δγ⃗ ) = Hγ⃗ (δH (k−1)/δγ⃗ ) = Eγ⃗ (δH (k−2)/δγ⃗ ) = P⃗ (k)
⊥
, k = 2, 3, . . . , (5.24)

where Eγ⃗ = Rγ⃗Hopγ⃗ is a third Hamiltonian operator compatible with Jγ⃗ and Hγ⃗ , and where the Hamiltonians are given by
the functionals

H (k)
=

1
k

∫
C
D−1
x (Rk+1

γ⃗
(γ⃗x) · γ⃗xx) dx, k = 1, 2, . . . (5.25)

and

H (0)
=

∫
C
ξ⃗ (γ⃗x) · γ⃗xx dx (5.26)

on the domain C = R or S1. Here ξ⃗ (γ⃗x) is any vector function in aff(G,H) satisfying

∇⃗
m

∧ ξ⃗ = ad∗

g(γ⃗x). (5.27)

For k = 1, the tri-Hamiltonian structure consists of

(γ⃗t )⊥ = Jγ⃗ (δH (1)/δγ⃗ ) = Hγ⃗ (δH (0)/δγ⃗ ) = −Eγ⃗ (δH0/δγ⃗ ) (5.28)

with H0 = const. being a trivial Hamiltonian, and where ∇
h
x is generalized to have a non-trivial cokernel (5.9) given by

(∇h
x )−1(0) = γ⃗x.

Similarly to the case k = 1 in Theorem 7, note that here Hγ⃗ (0) = −γ⃗x since −∇
−1
x adg(γ⃗x)adg(γ⃗xx)(∇

h
x )−1(0) =

∇
−1
x (adg(γ⃗x)2γ⃗xx) = −∇

−1
x γ⃗xx = −γ⃗x. Hence, −Eγ⃗ (0) = Rγ⃗ (γ⃗x) = adg(γ⃗x)−1γ⃗xx is equal to Hγ⃗ (adg(γ⃗x)γ⃗xxx) = ∇

−1
x adg(γ⃗x)

∇x(−γ⃗xx) = adg(γ⃗x)−1γ⃗xx.
Consequently, the tri-Hamiltonian form of the general vortex filament equation (4.24) is given by

γ⃗t = adg(γ⃗x)−1γ⃗xx = Jγ⃗ (δH (1)/δγ⃗ ) = Hγ⃗ (δH (0)/δγ⃗ ) = −Eγ⃗ (0). (5.29)

The second and third Hamiltonian structures shown here have not previously appeared in the literature.
The general vortex filament axial equation (4.34) has the tri-Hamiltonian form

γ⃗t = −γ⃗xxx +
3
2χ

2adg(γ⃗xx)2γ⃗x = Eγ⃗ (δH (0)/δγ⃗ ) = Hγ⃗ (δH (1)/δγ⃗ ) = Jγ⃗ (δH (2)/δγ⃗ ), (5.30)

which holds without needing the generalized cokernel (5.9).
Each of the Hamiltonians (5.25)–(5.26) in these curve flow equations can be seen to be exactly the same as the

Hamiltonians (5.5)–(5.6) for the associated spin vector models. In particular, the first few Hamiltonians for k ≥ 1 are
explicitly given by

H (1)
=

∫
C

1
2 |γ⃗xx|

2 dx, (5.31)
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H (2)
=

∫
C

1
2 γ⃗xxx · (adg(γ⃗x)γ⃗xx) dx, (5.32)

H (3)
=

∫
C

1
2 |γ⃗xxx|

2
−

5
8 |adg(γ⃗xx)2γ⃗x|

2
dx, (5.33)

H (4)
=

∫
C

1
2 (adg(γ⃗x)γ⃗xxx) · γ⃗xxxx +

7
8 (adg(γ⃗xx)2γ⃗x) · (adg(γ⃗xx)γ⃗xxx) dx. (5.34)

A more explicit expression for H (0) will be derived in Section 6.

6. Multi-Hamiltonian Schrödinger maps in Hermitian symmetric spaces

We will now show how the hierarchy of general spin vector models obtained in Theorem 7 for affine Hermitian
symmetric spaces aff(G,H) gives rise to a corresponding hierarchy of geometrical evolution equations for a map Ψ (x, t)
into the Hermitian symmetric space M = G/H associated with the Hermitian symmetric Lie algebra (g, A) underlying
aff(G,H). These evolution equations will be geometric versions of the isospectral flows in Theorems 1 and 4. In particular,
the respective geometrical versions of the H-invariant NLS and mKdV equations (2.24) and (2.33) will be the Schrödinger
map equation into M = G/H and its mKdV analog. We will discuss some of their properties. Specifically, we show that,
in contrast to the geometrical non-stretching curve flows in Theorem 8, these geometrical map equations are locally
stretching yet have a time-independent total arclength. Finally, we derive the Hamiltonian structure of the hierarchy of
geometrical map equations. These equations turn out to have a multi-Hamiltonian structure which has a simple form
involving only the Hermitian structure and the Riemannian connection on M = G/H . This generalizes and makes explicit
some results in Ref. [33] for Grassmannian Hermitian spaces.

6.1. Geometrical relationship between Hermitian spaces and Lie algebras

There is an explicit isometric embedding of a Hermitian symmetric space M = G/H into the orbit of the adjoint action
of G through A ∈ g in the symmetric Lie algebra g = m ⊕ h, where A is the imaginary-unit (2.2)–(2.3) in h. Since G is
compact, this embedding is given by [27] Ad(G)A = exp(ad(g))A ≃ M . There is gauge freedom in the embedding, because
ad(h)A = 0 implies Ad(G)A = Ad(G/H)Ad(H)A = Ad(G/H)A. Thus, the embedding can be expressed as

Ad(G/H)A ≃ exp(ad(m))A ≃ M, (6.1)

which is closely connected to the representation (4.20) for the tangent vector T of non-stretching curves γ⃗ (x) in the affine
Hermitian space aff(G,H) constructed from g. Specifically,

{χT ≃ Ad(ψe)A, ψe ∈ G} ≃ M (6.2)

with χ given by the norm (3.27) of A. (Note that Ad(ψe)A = A when ψe(x, t) ∈ H ⊂ G.)
Hence, for any given Hermitian symmetric space M , the components of the tangent vector T provide global coordinates

in M , as will be illustrated in the example in Section 7. As a consequence, χT(x, t) ∈ aff(G,H) = (G⋊ g)/G can be viewed
as a map Ψ (x, t) into M = G/H . Recall [20,31] that the tangent space of M is isomorphic m, whereby TΨM ≃ m. An
embedding of TΨM analogous to Eq. (6.2) comes from the principal normal vector Tx =

1
κ
N of non-stretching curves γ⃗ (x),

namely,

{χTx ≃ Dx(Ad(ψe)A) = −Ad(ψe)J(ψe
−1∂xψe), ψe(x) ∈ G} ≃ TΨM. (6.3)

A comparison between the tangent space embedding (6.3) and the representation (4.20) of the principal bi-normal
vector adg(T)Tx =

1
κ
B shows that the Hasimoto variable is given by q = ψe

−1∂xψe. The property that q belongs to m ⊂ g

directly corresponds to the condition on ψe(x) that ψe
−1∂xψe belongs to m ⊂ g. This condition can always be achieved,

starting from a general ψe(x) ∈ G, by making a gauge transformation

ψe(x) → ψe(x)g(x), g(x) ∈ H ⊂ G, (6.4)

where g(x) is determined by

(ψe
−1∂xψe)h → ((ψeg(x))−1∂x(ψeg(x)))h = (g(x)−1(ψe

−1∂xψe)g(x) + g(x)∂xg(x))h = 0. (6.5)

Such a gauge transformation is the analog of going from a general linear coframe in aff(G,H) to a G-parallel frame as
described in Theorem 2. Note that T, N, B are gauge invariant, since Ad(ψe)A → Ad(ψe)Ad(g(x))A = Ad(ψe)A.

The Hermitian and Riemannian structure of M = G/H given in terms of the embedding (6.1) will be discussed next.
The Hermitian structure on TΨM is related to the Hamiltonian operator JT = adg(T). Specifically, if Y ≃ Ad(ψe)y ∈ TΨM ,

with y ∈ m, then

JTY ≃
1
χ
Ad(ψe)Jy ∈ TΨM, (6.6)
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whereby χ JT coincides with action of J = ad(A) on m. Hereafter we will denote

JΨ := χ JT, (6.7)

which acts as

J2Ψ = −id (6.8)

on TΨM .
The Riemannian metric, gm, on M is given by restriction of the Euclidean metric g on aff(G,H) ≃ g to the subspace

corresponding to m ⊂ g. Namely, for Y ≃ Ad(ψe)y, Z ≃ Ad(ψe)z ∈ TΨM , with y, z ∈ m,

gm(Y , Z) = ⟨Ad(ψe)y,Ad(ψe)z⟩m = ⟨y, z⟩m (6.9)

by Ad-invariance of the inner product. This metric determines a unique torsion-free covariant derivative, ∇M , on M , which
can be identified with the restriction of ∇⃗ in aff(G,H) ≃ g to the subspace corresponding to m ⊂ g:

∇
M

≃ −J2Ψ ∇⃗. (6.10)

The curvature of M can be found by [20,31]

R(X, Y )Z := [∇
M
X ,∇

M
Y ]Z = −adg([X, Y ]g)Z (6.11)

when X, Y , Z are vector fields in TΨM such that X, Y are commuting, where R(· , · ) is the Riemann curvature tensor. It is
worth giving an explicit derivation of the curvature formula.

Consider, from the representation (4.19),

∇
M
Y Z = −J2ΨDY (Ad(ψe)z)

= −Ad(ψe)J2(∂Y z + [ψe
−1∂Yψe, z])

= Ad(ψe)(∂Y z + [(ψe
−1∂Yψe)h, z])

(6.12)

by the Lie bracket structure (2.1) of M . Thus,

∇
M
X (∇M

Y )Z = −J2ΨDX (−J2ΨDY (Ad(ψe)z))

= Ad(ψe)
(
∂X∂Y z + [(ψe

−1∂Yψe)h, ∂Xz] + [(ψe
−1∂Xψe)h, ∂Y z]

+ [(ψe
−1∂X∂Yψe)h, z] − [(ψe

−1∂Xψeψe
−1∂Yψe)h, z]

+ [(ψe
−1∂Xψe)h, [(ψe

−1∂Yψe)h, z]]
)
,

(6.13)

and hence

[∇
M
X ,∇

M
Y ]Z = Ad(ψe)([[(ψe

−1∂Xψe)h, (ψe
−1∂Yψe)h], z] − [[ψe

−1∂Xψe, ψe
−1∂Yψe]h, z]) (6.14)

after use of the condition [∂X , ∂Y ] = 0 that X, Y are commuting, and the Jacobi identity. Then, use of the decomposition
ψe

−1∂ψe = (ψe
−1∂ψe)h + (ψe

−1∂ψe)m combined with the Lie bracket structure (2.1) of M yields

[∇
M
X ,∇

M
Y ]Z = −Ad(ψe)([[(ψe

−1∂Xψe)m, (ψe
−1∂Yψe)m], z]). (6.15)

Next,

[X, Y ]g = [−Ad(ψe)J(ψe
−1∂Xψe),−Ad(ψe)J(ψe

−1∂Yψe)]

= Ad(ψe)[J(ψe
−1∂Xψe), J(ψe

−1∂Yψe)]

= Ad(ψe)[(ψe
−1∂Xψe)m, (ψe

−1∂Yψe)m]

(6.16)

by Ad-invariance of the Lie bracket and the property Jh = 0. Thus,

adg([X, Y ]g)Z = ad(Ad(ψe)[(ψe
−1∂Xψe)m, (ψe

−1∂Yψe)m])z

= Ad(ψe)ad([(ψe
−1∂Xψe)m, (ψe

−1∂Yψe)m])z,
(6.17)

which completes the derivation.

6.2. Geometric Schrödinger map equation

Through the relations

Ψ ≃ χT, Ψt ≃ χTt , Ψx ≃ χTx, (6.18)

and

JΨ∇
M
x ≃ −χ JT∇x, (6.19)
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the general Heisenberg spin model (4.37) for T(x, t) in aff(G,H) can be expressed as a geometrical map equation for Ψ (x, t).
This yields

Ψt = −JΨ∇
M
x Ψx, (6.20)

which is the well-known Schrödinger map equation formulated on a general Hermitian symmetric space M = G/H .
The Schrödinger map equation (6.20) can be viewed geometrically as a curve flow on M = G/H , where the local

arclength is given by dℓ =
√
gm(Ψx,Ψx) dx. The flow is locally stretching:

∂t dℓ = −(∂xgm(∇M
x Ψx, JΨΨx)/

√
gm(Ψx,Ψx)) dℓ ̸= 0. (6.21)

This result follows from

Dtgm(Ψx,Ψx) = 2gm(∇M
t Ψx,Ψx) = 2gm(∇M

x (JΨ∇
MΨx),Ψx) = −2Dxgm(∇M

x Ψx, JΨΨx) ̸= 0 (6.22)

using integration by parts followed by gm(JΨ X, X) = 0. Nevertheless, the total arclength of Ψ on a domain C in M is
preserved, since

ℓ =

∫
C

√
gm(Ψx,Ψx) dx (6.23)

satisfies
dℓ
dt

= 0 (6.24)

for C = S1 with periodic boundary conditions on Ψ , or C = R with asymptotic decay conditions on Ψx.
There is an explicit transformation under which the Schrödinger map equation (6.20) is equivalent to the H-invariant

NLS equation (2.24) for the Hasimoto variable q. Moreover, from the Hamiltonian formulation of the NLS equation on q
and the general Heisenberg spin model on T, the Schrödinger map equation acquires a rich Hamiltonian structure, which
will be derived next.

6.3. Tri-Hamiltonian operators

The identifications (6.18) allow the spin vector Hamiltonian operators JT and HT to be identified directly with
corresponding operators Jχ−1Ψ andHχ−1Ψ which will be, formally, a pair of compatible Hamiltonian operators with respect
to Ψ . However, the form of HT involves adg and ∇

h
x which are defined in terms of the structure of the affine space aff(G,H)

and are not part of the intrinsic structure of the Hermitian symmetric space M = G/H . This obstacle can be circumvented
by introducing geometrical versions of adg and ∇

h
x based on the structure of the group manifolds G and H .

One way to proceed is by exploiting the correspondence between the general Heisenberg spin model (5.14) and the
NLS isospectral flow (3.59) on the Hasimoto variable q arising through the soldering relations (4.20) and (6.10). These
relations show that

JΨ = adG(Ψ ), ∇
M
x = −J2ΨDx, [∇

M
x , JΨ ] = 0, (6.25)

hold on TxM , and that

Ψ = Ad(ψe)A, Ψx = −Ad(ψe)Jq, Ψt = −Ad(ψe)Jw, (6.26)

with

q = ψe
−1∂xψe ∈ m, w = ψe

−1∂tψe ∈ g = m ⊕ h. (6.27)

As a consequence, the Hamiltonian operators J and H and the recursion operator R = HJ−1 with respect to q can be
transformed into corresponding geometrical operators. Let ∇

G and ∇
H denote the unique torsion-free covariant derivative

determined by the metric on G and H , respectively. Then ∇
M and ∇

H are the restrictions of ∇
G to TxM and TxH:

∇
M

= −J2Ψ∇
G, ∇

H
= (1 + J2Ψ )∇

G. (6.28)

Let adG(· ) denote the adjoint action of G given by the Lie bracket in TxG, which can be identified with adg(· ) introduced
previously.

Proposition 4. Under the mapping Ad(ψe):

Ad(ψe)JAd(ψ−1
e ) = JΨ , (6.29)

Ad(ψe)HAd(ψ−1
e ) = −JΨ (∇M

x − MΨ )JΨ := HΨ , (6.30)

Ad(ψe)RAd(ψ−1
e ) = −JΨ (∇M

x − MΨ ) := RΨ , (6.31)
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where

MΨ := adG(Ψx)(∇H
x )

−1adG(Ψx) (6.32)

is a geometrical operator acting in TxM.

Proof. Let Y = Ad(ψe)y be any vector in TxM . We start with J and observe

Ad(ψe)JAd(ψ−1
e )Y = Ad(ψe)[A, y] = [Ad(ψe)A,Ad(ψe)y] = ad(Ψ )Y = JΨ ,

which yields the mapping (6.29).
We next consider

Ad(ψe)H(Ad(ψ−1
e )Y ) = Ad(ψe)(Dxy − ad(q)D−1

x (ad(q)y)).

For the first term, we note that Dxy = −J2(Dxy + ad(q)y) by use of −J2m = m and Jh = 0 along with the symmetric
Lie-algebra structure (2.1) of g. Hence, we have

Ad(ψe)Dxy = −J2ΨDx(Ad(ψe)y) = ∇
MY . (6.33)

The second term is

−Ad(ψe)ad(q)D−1
x (ad(q)y) = Ad(ψe)Jad(Jq)D−1

x (ad(Jq)Jy)

after we again use the previous properties. Then

∇
H
x (Ad(ψe)D−1

x (ad(Jq)Jy)) = Ad(ψe)((Dx + ad(q))D−1
x (ad(Jq)Jy))h

= Ad(ψe)ad(Jq)Jy = adG(Ψx)JΨ Y

since (ad(q)D−1
x (ad(Jq)Jy))h = 0 by the symmetric Lie-algebra structure (2.1). Hence we have

Ad(ψe)Jad(Jq)D−1
x (ad(Jq)Jy) = JΨ adG(Ψx)(∇H

x )
−1(adG(Ψx)JΨ Y ) = JΨMΨ (JΨ Y ). (6.34)

Combining the two terms (6.33) and (6.34), we obtain the mapping (6.30).
Finally, composition of HΨ and J−1

Ψ = −JΨ yields the mapping (6.31). □

The geometrical operators (6.29)–(6.31) have the following main properties.

Theorem 9. In any Hermitian symmetry space M = G/H,

RΨ = HΨ J−1
Ψ (6.35)

is a hereditary recursion operator, and

JΨ , HΨ = RΨ JΨ , EΨ = RΨHΨ = R2
Ψ JΨ (6.36)

are compatible Hamiltonian operators with respect to the geometrical map variable Ψ ∈ M. Each of these operators involves
only the intrinsic structure of M. They respectively correspond to the recursion operator R and the Hamiltonian operators
E = RH = R2J , RE = R2H = R3J , R2E = R3H = R4J , with respect to the Hasimoto variable q ∈ m.

Theorem 9 gives a generalization, in an explicit form, of some results stated in Ref. [33] for geometrical maps into
Grassmannian Hermitian spaces. In particular, there is a shift of −2 in transforming Hamiltonian structures with respect
to q into Hamiltonian structures with respect to Ψ . To proceed with the proof, a useful variational result will be established
first.

Lemma 2. (i) For any Hamiltonian functional H,

JΨ (δH/δΨ ) = −Ad(ψe)H(δH/δq) (6.37)

is a variational identity, where H is the Hamiltonian operator (3.53). (ii) If Dq is a Hamiltonian operator with respect to q, then

DΨ = JΨAd(ψe)H−1DqH−1Ad(ψ−1
e )JΨ (6.38)

is a Hamiltonian operator with respect to Ψ .

Proof. To derive part (i), consider an arbitrary variation δψe. The first expression (6.27) yields δq = (Dx+ad(q))(ψe
−1δψe),

which can be projected into m and h. Since δq belongs to m, the projections give δq = Dx(ψe
−1δψe)m + ad(q)(ψe

−1δψe)h
and Dx(ψe

−1δψe)h + ad(q)(ψe
−1δψe)m = 0 by use of the symmetric Lie-algebra structure (2.1) of g. Solving the second

equation for (ψe
−1δψe)h and substituting it into the first equation, we obtain

δq = H(ψe
−1δψe)m. (6.39)
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Next, the first expression (6.26) yields δΨ = δ(ψeAψe
−1) = −Ad(ψe)J(ψe

−1δψe). Hence, we have

δΨ = −JΨ (δψeψe
−1)m. (6.40)

The variational relations (6.39) and (6.40) then yield

δq = H(Ad(ψ−1
e )JΨ δΨ ). (6.41)

Now consider the corresponding variations of any Hamiltonian functional H: modulo a total x-derivative,

δH = ⟨δH/δq, δq⟩m = ⟨δH/δq,H(Ad(ψ−1
e )JΨ δΨ )⟩m = −⟨H(δH/δq),Ad(ψ−1

e )JΨ δΨ ⟩m (6.42)

by use of the property that H is skew-adjoint. Likewise,

δH = gm(δH/δΨ , δΨ ) = ⟨Ad(ψ−1
e )JΨ (δH/δΨ ),Ad(ψ−1

e )JΨ δΨ ⟩m (6.43)

by use of the Ad-invariance of gm. Equating these two expressions (6.42) and (6.43), we get the variational derivative
relation (6.37).

To verify part (ii), suppose that Dq is Hamiltonian operator with respect to q, and consider qt = Dq(δH/δq). We can
relate qt to Ψt by applying equation (6.41) to the variation given by δ = ∂t :

qt = H(Ad(ψ−1
e )JΨΨt ). (6.44)

This yields Ψt = −JΨAd(ψe)H−1(qt ) and hence

DΨ (δH/δΨ ) = −JΨAd(ψe)H−1Dq(δH/δq). (6.45)

Then, through the relation (6.37), DΨ is given by the operator (6.38). The proof that this operator is Hamiltonian can be
given by the same argument used in the proof of Lemma 1. □

Now the main step in the proof of Theorem 9 consists of applying Lemma 2 to the three compatible Hamiltonian
operators Dq = E = HJ−1H, Dq = RE = (HJ−1)2H, Dq = R2E = (HJ−1)3H. This yields, respectively, DΨ = JΨAd(ψe)
J−1Ad(ψ−1

e )JΨ = JΨ , DΨ = JΨAd(ψe)J−1HJ−1Ad(ψ−1
e )JΨ = HΨ , DΨ = JΨAd(ψe)J−1HJ−1HJ−1Ad(ψ−1

e )JΨ = EΨ .
Consequently, these geometrical operators are compatible Hamiltonian operators with respect to Ψ . Moreover, their
compatibility implies that RΨ is a hereditary recursion operator. This completes the proof.

6.4. Multi-Hamiltonian form of the general Schrödinger map equation

The Hamiltonian operators (6.36) in Theorem 9 are geometrical counterparts of the spin vector operators JT, HT, and
ET . As a consequence, a tri-Hamiltonian form can be derived for the Schrödinger map equation (6.20) similarly to the
tri-Hamiltonian structure of the general Heisenberg model (5.14).

This geometrical tri-Hamiltonian form is given by

Ψt = −JΨ∇
M
x Ψx = JΨ (δH (1)/δΨ ) = HΨ (δH (0)/δΨ ) = EΨ (0), (6.46)

where

H (1)
=

∫
C

1
2gm(Ψx,Ψx) dx (6.47)

and

H (0)
=

∫
C
gm(ξ (Ψ ),Ψx) dx (6.48)

are the Hamiltonian functionals on the domain C = R or S1, with ξ (Ψ ) being any vector function satisfying

∇
M

∧ ξ = J∗Ψ . (6.49)

Here J∗Ψ denotes the skew tensor associated with JΨ as defined by g(J∗Ψ , X ∧ Y ) = g(X, JΨ Y ), for all vectors X, Y ∈ TxM ,
where M = G/H . Note that Eq. (6.49) has a solution because ∇

M J∗Ψ = 0 and so no integrability condition arises on ξ .
(Specifically, ∇M

∧ ∇
M

∧ ξ = 0 holds identically.)
Also, note EΨ (0) = RΨHΨ (0) with H(0) = JΨ adG(Ψx)Ψ = −JΨ adG(Ψ )Ψx = −J2ΨΨx = Ψx, which holds by generalizing

∇
H
x to have a non-trivial cokernel

(∇H
x )

−1(0) = Ψ . (6.50)

This generalization is well-defined because ∇
H
x Ψ = Ad(ψe)(ad(q)A)h = 0. Then EΨ (0) = RΨ (Ψx) = −JΨ∇

M
x Ψx.

The second and third Hamiltonian structures for the Schrödinger map equation in a general Hermitian symmetric space
M = G/H are new results.
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Finally, it is worth looking at the geometrical equivalence between the Schrödinger map equation (6.20) and the
isospectral NLS equation (3.59). This equivalence arises directly from the relation (6.44) derived previously between qt
and Ψt , together with the main relations

Ψx = −Ad(ψe)Jq, JΨ = Ad(ψe)JAd(ψ−1
e ), ∇

M
x = DxAd(ψ−1

e ) = −Ad(ψe)J2Dx, (6.51)

which follow from Eqs. (6.25), (6.26), (6.33).

Proposition 5. The Schrödinger map equation (6.20) on Ψ ∈ M in any Hermitian symmetric space M = G/H is equivalent
to the NLS isospectral flow (3.59) on the Hasimoto variable q ∈ m in the associated affine Hermitian space aff(G,H). Both this
isospectral flow and the Schrödinger map equation geometrically correspond to the general Heisenberg spin vector model (5.14)
for T ∈ aff(G,H)

Through this equivalence, the tri-Hamiltonian structure (3.71) of the isospectral NLS flow (3.59) turns out by Theorem 9
to yield the first Hamiltonian structure (6.46) of the Schrödinger map equation plus two additional Hamiltonian structures:

Ψt = −JΨ∇
M
x Ψx = R−1

Ψ JΨ (δH (2)/δΨ ) = R−2
Ψ JΨ (δH (3)/δΨ ), (6.52)

where

H (2)
=

∫
C

1
2gm(∇

M
x Ψx, JΨΨx) dx, (6.53)

H (3)
=

∫
C

1
2gm(∇

M
x Ψx, JΨΨx) dx (6.54)

are Hamiltonian functionals on the domain C = R or S1. Clearly, there is a hierarchy of similar Hamiltonian structures
given by

Ψt = R−k
Ψ JΨ (δH (k+1)/δΨ ) (6.55)

with the Hamiltonian functionals

H (k)
=

1
k

∫
C
D−1
x (gm(Rk

Ψ (Ψx), JΨΨx)) dx, k = 1, 2, . . . (6.56)

Each of these Hamiltonians corresponds to the Hamiltonians (3.69) in the hierarchy of isospectral flows (3.70) with q and
its x-derivatives expressed in terms of Ψ and its covariant x-derivatives through the relations (6.51).

The bottom of the hierarchy of Hamiltonian structures can be viewed as being given by the third Hamiltonian form
(6.46) of the Schrödinger map equation involving EΨ and H = 0. It is interesting to note that this non-standard
Hamiltonian form corresponds to a similar non-standard Hamiltonian structure for the isospectral NLS flow (3.59):

1
χ2 qt = −Jqxx +

1
2 [q, [q, Jq]] = R(qx) = RE(0), (6.57)

where E(0) = qx as explained in Proposition 2.

6.5. Hierarchy of geometrical map equations

Each isospectral flow equation (3.68) in the hierarchy in Theorem 4 is equivalent to a geometrical map equation
for Ψ (x, t) given by the same steps used to establish the equivalence between the NLS isospectral flow (3.59) and the
Schrödinger map equation (6.20) in Proposition 5. Likewise, this equivalence allows identifying each spin vector model
(5.4), (5.8) for T(x, t) in the hierarchy in Theorem 7 with a corresponding geometrical map equation. All of the resulting
geometrical map equations will have an explicit multi-Hamiltonian structure similar to what was just derived for the
Schrödinger map equation (6.55).

These results are summarized in the following two Theorems.

Theorem 10. For any Hermitian symmetric space M = G/H, there is a hierarchy of geometrical map equations

Ψt = Rn
Ψ (Ψx), n = 0, 1, 2, . . . (6.58)

for Ψ (x, t) ∈ M, where RΨ is the hereditary recursion operator (6.35). Each of these geometrical map equations (6.58) for
n ≥ 1 has a multi-Hamiltonian structure given by

Ψt = R−k
Ψ JΨ (δH (k+n)/δΨ ), k = 1, 2, . . . , (6.59)

where the Hamiltonians are given by the functionals (6.56) on the domain C = R or S1.

The hierarchy of geometrical map equations (6.58) starts from Ψt = Ψx (n = 0), which is a traveling wave equation.
Next in this hierarchy (n = 1) is the Schrödinger map equation (6.20). After that comes (n = 2)

Ψt = −(∇m
x )

2Ψx −
1
2adG(JΨΨx)2Ψx, (6.60)
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which is an mKdV analog of the Schrödinger map equation. More precisely, it is analogous to the mKdV equation in
potential form and corresponds to the higher-order spin vector model (4.38).

Like the Schrödinger map equation (6.20), each of these geometrical map equations describes a locally stretching curve
flow on M with the feature that the total arclength of the curve Ψ on a domain C in M is a constant of motion.

Theorem 11. In the hierarchy of geometrical map equations (6.58) in any Hermitian symmetric space M = G/H, the +n
evolution equation (6.58) for the map Ψ is equivalent both to the +n + 1 flow equation (3.67) in the hierarchy of isospectral
flows for the Hasimoto variable q and to the +k vector equation (4.55) in the hierarchy of spin models for T in the associated
affine Hermitian space aff(G,H) = (G ⋊ g)/G.

In particular, the +1 flow equation qt = R(Jq) = qx corresponds to the n = 0 map equation Ψt = Ψx; the +2
flow equation qt = R2(Jq) = −Jqxx +

1
2ad(q)

2Jq, which is the H-invariant NLS equation, corresponds to the n = 1
map equation Ψt = RΨ (Ψx) = −JΨ∇

M
x Ψx, which is the Schrödinger map equation (6.20); and +3 flow equation

qt = R3(Jq) = −qxxx + ad(q)2qx +
1
2 (ad(Jq)

2q)x, which is the H-invariant mKdV equation, corresponds to the n = 2
map equation Ψt = R2

Ψ (Ψx) = −(∇m
x )

2Ψx −
1
2adm(JΨΨx)2Ψx, which is the mKdV analog of the Schrödinger map equation.

6.6. Matrix formulation of geometrical map equations and spin vector models

When examples of Hermitian symmetric spaces M = G/H are considered, it is useful to have a matrix representation
for the geometrical map variable Ψ ∈ M , the spin vector variable T ∈ aff(G,H), and the Hasimoto variable q ∈ m.

We will work with the fundamental matrix representation in gl(dim g) for the Hermitian symmetric Lie algebra
g = m ⊕ h. Since G is a compact Lie group, recall that it is generated by the exponential mapping exp(g) ≃ G.

A fundamental matrix expression for the spin vector variable T and the geometrical map variable Ψ is given by

χT = Ψ = Ad(exp(m(x, t)))A (6.61)

because their representations (6.2) and (6.26) are invariant under gauge transformations (6.4). Derivatives of T and Ψ can
be obtained from relations (4.19) and (6.33) by applying, respectively, ∇x = Dx and ∇

M
x = −ad(Ad(exp(m(x, t)))A)2Dx to

the matrix expression (6.61). In particular,

χTx = DxAd(exp(m(x, t)))A, (6.62)

Ψx = −ad(Ad(exp(m(x, t)))A)2DxAd(exp(m(x, t)))A, (6.63)

and so on. Similarly, their time derivative is given by

χTt = DtAd(exp(m(x, t)))A, (6.64)

Ψt = −ad(Ad(exp(m(x, t)))A)2DtAd(exp(m(x, t)))A. (6.65)

Moreover, the matrix expression (6.61) yields

χadg(T) = JΨ = ad(Ad(exp(m(x, t)))A). (6.66)

As a result, the Schrödinger map equation (6.20) and the Heisenberg spin model (4.37) are equivalent to the matrix system

DtAd(exp(m(x, t)))A + ad(Ad(exp(m(x, t)))A)D2
xAd(exp(m(x, t)))A = 0. (6.67)

Finally, a fundamental matrix expression for Hasimoto variable q can be obtained by starting with ψe(x) = exp(m(x, t))
and applying a gauge transformation (6.4) to achieve the gauge condition (6.5):

(g(x, t)−1(exp(−m(x, t))∂x exp(m(x, t)))g(x, t) + g(x, t)∂xg(x, t))h = 0, (6.68)

which determines g(x, t) ∈ H ⊂ G. Then, from the representation (6.27),

q = g(x, t)−1 exp(−m(x, t))(∂x exp(m(x, t)))g(x, t). (6.69)

7. Example of CPN

We will now apply the general theory developed in Theorem 5, 7, 8, and 10 to the Hermitian symmetric Lie algebra
su(N+1) ≃ CN

⊕u(N), which underlies the complex projective space CPN
= SU(N+1)/S(U(N)×U(1)) = SU(N+1)/U(N).

In this example, first the NLS and mKdV isospectral flows on the Hasimoto variable will be written down, where the
cubic nonlinear terms will be expressed in terms of the inner product and the Hermitian structure of the Lie algebra. Next
the corresponding geometric non-stretching curve flows in the affine Hermitian symmetric spaces aff(SU(N + 1),U(N))
and aff(SU(N+2), S(U(N)×U(2))) will be formulated. After that, the fundamental matrix representation of the Schrödinger
map equation in CPN and Heisenberg spin vector model in su(N +1), along with their Hamiltonian structures, are written
out.

Details of the needed algebraic structure of the Lie algebra su(N + 1) ≃ CN
⊕ u(N) are summarized in an appendix.
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7.1. Integrable systems arising from a complex vector-valued hasimoto variable

The Hermitian symmetric Lie algebra su(N + 1) ≃ CN
⊕ u(N) has the fundamental matrix representation(

−trA a
−āt A

)
∈ g = su(N + 1), (7.1)(

−trA 0
0 A

)
∈ h = s(u(1) ⊕ u(N)) ≃ u(N), (7.2)(

0 a
−āt 0

)
∈ m = su(N + 1)/u(N) ≃ CN , (7.3)

where A ∈ u(N), a ∈ CN , tr(A) ∈ iR. Hence, the Hasimoto variable in m ≃ maff is given by the matrix

q =

(
0q(x, t)
−q̄t(x, t) 0

)
, q ∈ CN , (7.4)

which represents a complex vector in Cn. The geometrical setting for this variable consists of arclength-parameterized
curves γ⃗ (x) formulated using a linear coframe e and a linear connection ω in the affine Hermitian space

aff(SU(N + 1),U(N)) = (SU(N + 1) ⋊ su(N + 1))/SU(N + 1), (7.5)

where the tangent vector of a curve is represented by the matrix

e⌋γ⃗x ≃ e =
1
χ

( N
N+1 i 0
0 −

1
N+1 iIN

)
∈ Z(h), χ2

= dim(CN ) = 2N, (7.6)

which is a unit-norm element belonging to the center of h. In this setting, the Hasimoto variable represents the principal
bi-normal vector of the curve, e⌋adg(γ⃗x)∇xγ⃗x ≃ q. It also is the tangential projection of the linear connection ω in
aff(SU(N + 1),U(N)) along the tangential direction γ⃗x of the curve, q ≃ ω⌋γ⃗x.

A non-stretching flow γ⃗t of an arclength-parameterized curve is specified by the variable h = h⊥+h∥ ≃ e⌋γ⃗t in g ≃ gaff,
where this variable has the matrix representation

h⊥ =

(
0 h⊥(x, t)

−h̄t
⊥
(x, t) 0

)
, h⊥ ∈ CN , (7.7)

h∥ =

(
−trh∥(x, t) 0

0 h∥(x, t)

)
, h∥ ∈ u(N). (7.8)

The projection of the linear connection along the flow direction γ⃗t is given by the variable w = w⊥ + w∥ ≃ ω⌋γ⃗t in
g ≃ gaff, which is represented by the matrices

w⊥ =

(
0 w⊥(x, t)

−w̄t
⊥
(x, t) 0

)
, w⊥ ∈ CN , (7.9)

w∥ =

(
−trw∥(x, t) 0

0 w∥(x, t)

)
, w∥ ∈ u(N). (7.10)

To write out the integrable isospectral flows on the Hasimoto variable q, we will need the Lie bracket structure (2.1)
and, in particular, the ad-squared action of CN on CN . This structure can be expressed entirely in terms of the vector dot
product on CN and the Hermitian structure J = ad(A) of SU(N + 1)/U(N) which acts by multiplication by i on CN , where
A = χe as shown in Eqs. (A.10)–(A.11).

The NLS and mKdV isospectral flows (3.59) and (3.65) thereby have the respective forms
1
χ2 qt = −i(qxx + 2|q|2q) (7.11)

and
1
χ2 qt = −qxxx − 3|q|2qx − 3(qx · q̄)q. (7.12)

These complex-vector equations (7.11) and (7.12), which are U(N)-invariant, agree with the NLS and mKdV integrable
systems derived from geometric curve flows in the Lie group SU(N + 1) in Ref. [5], after a phase rotation, a Galilean
boost, and a scaling of t are applied. Their bi-Hamiltonian structure (3.71) and (3.72) is also presented explicitly there. In
particular, the bi-Hamiltonian operators are given by

H = Dx + 2iqD−1
x Imq̄ · +q · D−1

x q ∧̄ , (7.13)

J = Dx + 2qD−1
x Req̄ · +q · D−1

x q ⊙̄ , (7.14)
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which are U(N)-invariant, where

a ∧̄ b = ātb − b̄ta, a ⊙̄ b = ātb + b̄ta, a, b ∈ CN . (7.15)

An equivalent form for each isospectral flow equation (7.11) and (7.12) is obtained by using the relation (A.7) between
the vector dot product and the inner product ⟨·, ·⟩ on CN . This yields

1
χ2 qt = −i(qxx + 2⟨q, q⟩q) (7.16)

and
1
χ2 qt = −qxxx − 3⟨q, q⟩2qx − 3(⟨q, qx⟩ + i⟨iq, qx⟩)q, (7.17)

which are expressed just in terms of the inner product. The bi-Hamiltonian operators (7.13)–(7.14) can be expressed in
an analogous form.

In the context of Hermitian symmetric spaces, the isospectral NLS equation (7.11) first appeared in Refs. [16,22], and
likewise the isospectral mKdV equation (7.12) first appeared in Ref. [14], but the explicit bi-Hamiltonian operators were
not given.

7.2. Schrödinger map equation in CPN and Heisenberg spin vector model in su(N + 1)

The isospectral NLS equation (7.11) is geometrically equivalent to the Schrödinger map equation (6.20) for a map
Ψ (x, t) into the Hermitian symmetric space

CPN
≃ SU(N + 1)/S(U(1) × U(N)) = SU(N + 1)/U(N). (7.18)

This space has an isometric embedding into the Lie algebra su(N + 1) ≃ CN
⊕ u(N), as given by the matrix

Ψ =

( N
N+1 i − sin2(θ )i − sin(θ ) cos(θ )iΘ
sin(θ ) cos(θ )iΘ̄ t −1

N+1 iIN + sin2(θ )iΘ̄ tΘ

)
∈ su(N + 1) (7.19)

with

θ ∈ [0, π], Θ ∈ CN , ⟨Θ,Θ⟩ = 1. (7.20)

Thus, (θ,Θ) provide global coordinates for the space (7.18).
Through the matrix representation of the principal bi-normal vector, adg(γ⃗x)∇xγ⃗x = χ2JΨ∇

M
x Ψ , shown in Eq. (A.25),

the Hasimoto variable can be expressed explicitly in terms of the coordinates (θ,Θ):

q = ei(1+
1
N )Γ (θxΘ + sin(θ )Θx + sin(θ )(1 − cos(θ ))⟨iΘx,Θ⟩iΘ)Γ, (7.21)

where Γ and Γ are nonlocal expressions given by the system of differential equations (A.24).
The Schrödinger map equation (6.20) in matrix form (6.67) is given by Ψt + ad(Ψ )D2

xΨ = 0. This su(N + 1)-matrix
equation can be split into m and h components, given by a complex vector equation and a unitary matrix equation:

1
2 sin(2θ )iΘt + cos(2θ )θt iΘ −

(
θxΘ +

1
2 sin(2θ )(i(1 − cos(2θ ))⟨iΘx,Θ⟩Θ +Θx)

)
x = 0, (7.22)

1
2 (1 − cos(2θ ))i(Θ̄ tΘ)t + sin(2θ )θt iΘ̄ tΘ

−
( 1
2 (1 − cos(2θ ))(Θ ∧̄Θx +

1
2 (1 − cos(2θ ))⟨iΘx,Θ⟩iΘ̄ tΘ)

)
x = 0. (7.23)

This coupled nonlinear system is equivalent to the evolution system

θt = − sec(2θ )
(
θx⟨iΘx,Θ⟩ + ( 12 sin(2θ ) cos(2θ )⟨iΘx,Θ⟩)x

)
, (7.24)

iΘt = 2 csc(2θ )
(
θx⟨iΘx,Θ⟩iΘ −

1
2 sin(2θ ) cos(2θ )⟨iΘx,Θ⟩iΘx

+( 12 sin(2θ )⟨iΘx,Θ⟩iΘ)x + (θxΘ +
1
2 sin(2θ )Θx)x

)
,

(7.25)

which inherits the integrability properties of the Schrödinger map equation (6.20).
The integrable system (7.24)–(7.25) is equivalent to the Heisenberg spin model (5.14) for T =

1
χ
Ψ ∈ su(N+1). Another

way of formulating this system is by expressing

χT =

(
−itrS ±i

√
1 − |s|2s

∓i
√
1 − |s|2s̄t iS

)
, S =

−1
N+1 IN + s̄ts, (7.26)

where

s = sin(θ )Θ ∈ CN , |s| ≤ 1. (7.27)

In this representation, T gives a double cover of the complex ball 0 ≤ |s| ≤ 1 describing the stereographic projection
of the two half-spaces of CPN onto the complex space CN . Then the evolution equation for T can be expressed as an
evolution equation for s given by combining the equations in the system (7.24)–(7.25).
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It is worth remarking on the case N = 1. The isospectral flow equations (7.11) and (7.12) reduce to the scalar NLS
equation ut = −i(uxx + 2|u|2u) and the scalar Hirota (complex mKdV) equation ut = −uxxx − 6|u|2ux for u = q ∈ C. In
this case, CP1

≃ S2 is the Riemann sphere. The coordinates (θ,Θ) geometrically describe a polar angle θ ∈ [0, π] and an
azimuthal angle ϕ ∈ [0, 2π ) represented by a unit complex number Θ = eiϕ . The complex number s ∈ C lies in the disk
|s| ≤ 1, which represents the stereographic projections of the upper and lower hemispheres of the Riemann sphere into
the complex plane attached to the north and south poles.

The equivalence between the scalar NLS equation ut = −i(uxx + 2|u|2u), the Schrödinger map equation into S2, and
the Heisenberg spin model in su(2) ≃ R3, as well as their integrability structures, is discussed in Ref. [12].

8. Concluding remarks

This paper has presented a general theory extending the geometrical relationships among the NLS equation, the vortex
filament equation, the Heisenberg spin model, and the Schrödinger map equation to the setting of Hermitian symmetric
spaces.

The main underlying relation is provided by geometric non-stretching curve flows in an associated affine Hermitian
symmetric Lie algebra. There is a hierarchy of curve flows having a bi-Hamiltonian structure which takes a simple explicit
form in terms of a Hasimoto variable defined by the connection-matrix variable in a parallel moving frame, as given by
the general results on parallel frames and Hasimoto variables obtained in Ref. [6].

To illustrate some of the main results, we have considered one example: complex projective space CPN
= SU(N +

1)/S(U(N)×U(1)) = SU(N +1)/U(N), which corresponds to the Hermitian symmetric Lie algebra su(N +1) ≃ CN
⊕ u(N).

In a subsequent paper [13], we will look at all other classical Hermitian symmetric spaces: SU(N + 2)/S(U(N) × U(2)),
SO(N + 2)/(SO(N) × SO(2)), SO(8)/U(4), Sp(2)/U(2).

An interesting direction for generalizing this work would be to study Miura transformations. It is well-known that a
Miura transformation exists between the NLS equation and the vector NLS equation, and that this relationship extends [16]
to the isospectral NLS flows in general Hermitian symmetric spaces.

Another interesting direction would be to study negative isospectral flows and explore their relationship to group
invariant Camassa–Holm type equations in general Hermitian symmetric spaces.
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Appendix. Lie algebraic structure of complex projective space

The complex projective space CPN is isomorphic to the Hermitian symmetric space SU(N + 1)/S(U(1) × U(N)) =

SU(N + 1)/U(N) which is of type AIII(q = 1) in the classification of Cartan [20]. This space has the associated symmetric
Lie algebra su(N + 1) = CN

⊕ u(N).
The Lie brackets (2.1) in the fundamental matrix representation (7.1)–(7.3) are straightforwardly given by

[h,m] = [(A), (a)] = (−tr(A)a − aA) ∈ m, (A.1)

[m,m] = [(a1), (a2)] = (a2 ∧̄ a1) ∈ h, (A.2)

[h, h] = [(A1), (A2)] = ([A1,A2]) ∈ h, (A.3)

where

(A) :=

(
−trA 0
0 A

)
∈ h ≃ u(N), (a) :=

(
0 a

−āt 0

)
,∈ m ≃ CN , (A.4)

and

(A, a) := (A) + (a) =

(
−trA a
−āt A

)
∈ g = su(N + 1), (A.5)

with a ∈ CN , A ∈ u(N), and where a2 ∧̄ a1 = āt2a1 − āt1a2 ∈ u(N). For more details, see Ref. [2].
From composition of the Lie brackets (A.1) and (A.2), the following formula for the action of ad(m)2 on m is obtained:

ad((a))2(b) = ((2b̄ · a − ā · b)a − (ā · a)b) = ((⟨b, a⟩ + 3i⟨ib, a⟩)a − ⟨a, a⟩b). (A.6)

This result uses the relations

b̄ · a = ⟨b, a⟩ + i⟨ib, a⟩, (A.7)

⟨b, a⟩ = Re(b̄ · a), ⟨ib, a⟩ = Im(b̄ · a), (A.8)
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where ⟨·, ·⟩ denotes the inner product on CN . The Killing form on m is related to this inner product by

⟨b, a⟩m = −K (b, a) = −2(N + 1)tr((a)(b)) = 4(N + 1)⟨b, a⟩. (A.9)

The Hermitian structure of SU(N + 1)/S(U(1) × U(N)) = SU(N + 1)/U(N) is given by the imaginary-unit element

A = (− 1
N+1 iIN ) ∈ u(N) = h. (A.10)

This element acts as

ad(A)g = ad((− 1
N+1 iIN ))(A, a) = (0, ia), (A.11)

whereby J = ad(A) is represented by multiplication by i on m. The squared norm of A is given by

χ2
= −K (A, A) = −2(N + 1)tr(A2) = 2N = dim(CN ). (A.12)

The embedding (6.1) of CPN
≃ SU(N+1)/S(U(1)×U(N)) = SU(N+1)/U(N) into the Lie algebra su(N+1) = CN

⊕u(N),
along with the corresponding su(N + 1)-matrix expression for q, will now be derived. This is most easily carried out in
two steps. First, a simple gauge choice ψe = exp(m) will be used to evaluate Ψ = Ad(ψe)A, which is gauge invariant.
Next, a gauge transformation (6.4) will be applied to impose (ψ−1

e ∂xψe)h = 0 on ψe, yielding q = ψ−1
e ∂xψe.

For the first step, consider the matrix ψ̃ = exp(m) =
∑

∞

k=0
1
k! (a)

k, where it will be simplest to evaluate the even and
odd power terms separately:

(a)k =

{
ik−1

|a|k−1(a), k = 1, 3, 5, . . .
−ik2k−1

|a|k−2(āta), k = 2, 4, 6, . . .
(A.13)

with |a|2 = ⟨a, a⟩. Hence,∑
l≥1

1
(2l−1)! (a)

2l−1
= sin(|a|)

(
0 â

−¯̂at 0

)
,
∑
l≥1

1
(2l)! (a)

2l
= (cos(|a|) − 1)

(
1 0
0 ¯̂atâ

)
, (A.14)

with â =
1
|a|a, which yields

ψ̃ = exp(m) =

(
0 0
0 IN − ¯̂atâ

)
+ sin(|a|)

(
0 â

−¯̂at 0

)
+ cos(|a|)

(
1 0
0 ¯̂atâ

)
∈ SU(N + 1). (A.15)

Proposition 6. The orbit of Ad(SU(N + 1))A in su(N + 1) is given by the matrix

Ψ = Ad(ψ̃)A = −
1

N+1 (iIN ) +
1
2 (1 − cos(2θ ))(iΘ̄ tΘ) −

1
2 sin(2θ )(iΘ) ∈ SU(N + 1) (A.16)

with

θ ∈ [0, π], Θ ∈ CN , ⟨Θ,Θ⟩ = 1, (A.17)

where (iIN ), (iΘ̄ tΘ) ∈ h ≃ u(N), (iΘ) ∈ m ≃ CN . This unitary matrix (A.16) represents the isometric embedding of
CPN

≃
SU(N+1)

S(U(1)×U(N)) =
SU(N+1)
U(N) into the Lie algebra su(N + 1) = CN

⊕ u(N).

The next step consists of evaluating ψ̃−1∂xψ̃ using the matrix (A.15). This yields, by a direct computation,

(ψ̃−1∂xψ̃)m = θx (Θ) + sin(θ )(Θx) + sin(θ )(1 − cos(θ ))φ (iΘ), (A.18)

(ψ̃−1∂xψ̃)h = (1 − cos(θ ))(iΦ) + (1 − cos(θ ))2φ (iΘ̄ tΘ), (A.19)

with

φ = ⟨iΘx,Θ⟩ ∈ R, iΦ = Θ ∧̄Θx ∈ u(N), trΦ = −2φ. (A.20)

Now consider a gauge transformation ψ̃ → ψ̃g(x) = ψe, where

g =

(
eiΓ 0
0 e−

1
N iΓ Γ

)
∈ H = S(U(1) × U(N)) ≃ U(N), Γ ∈ R, Γ ∈ SU(N). (A.21)

This transformation yields

(ψe
−1∂xψe)m = θx (ei(1+

1
N )ΓΘΓ) + sin(θ )(ei(1+

1
N )ΓΘxΓ)

+ sin(θ )(1 − cos(θ ))φ (iei(1+
1
N )ΓΘΓ),

(A.22)

(ψe
−1∂xψe)h = (1 − cos(θ ))(iAd(Γ−1)Φ) + (1 − cos(θ ))2φ (iAd(Γ−1)Θ̄ tΘ)

+(−1
N iΓxIN + Γ−1Γx).

(A.23)
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Then the gauge condition (ψ−1
e ∂xψe)h = 0 gives a matrix differential equation. Its trace and trace-free parts yield the

system

0 = Γx + sin2(θ )φ,
0 = Γx + (1 − cos(θ ))i(Φ + (1 − cos(θ ))φΘ̄ tΘ)Γ,

(A.24)

for Γ (x) ∈ R, Γ(x) ∈ SU(N). Clearly, this system of differential equations (A.24) will have a unique solution (locally in x)
with any given initial data Γ (x0) ∈ R, Γ(x0) ∈ SU(N) specified at an arbitrary x = x0. As a result, the following expression
is obtained for q.

Proposition 7. The Hasimoto variable q ∈ m ≃ CN for CPN
≃

SU(N+1)
S(U(1)×U(N)) =

SU(N+1)
U(N) is given by the matrix

q = ψe
−1∂xψe = θx (ei(1+

1
N )ΓΘΓ) + sin(θ )(ei(1+

1
N )ΓΘxΓ)

+ sin(θ )(1 − cos(θ ))φ (iei(1+
1
N )ΓΘΓ),

(A.25)

which is determined uniquely in terms of θ (x) and Θ(x) through the differential equations (A.24), up to a rigid (x-independent)
gauge transformation q → Ad(U(N))q.
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