期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:149
Riemann-Hilbert problems and soliton solutions for a multi-component cubic-quintic nonlinear Schrodinger equation
Article
Zhang, Yong1  Dong, Huan-He1  Wang, Deng-Shan2 
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
关键词: Multi-component cubic-quintic nonlinear;    Schrodinger equation;    Integrable hierarchy;    Riemann-Hilbert problem;    Soliton solution;   
DOI  :  10.1016/j.geomphys.2019.103569
来源: Elsevier
PDF
【 摘 要 】

In this paper, based on the zero curvature equation, an arbitrary order matrix spectral problem is studied and its associated multi-component cubic-quintic nonlinear Schrodinger integrable hierarchy is derived. In order to solve the multi-component cubic-quintic nonlinear Schrodinger system, a class of Riemann-Hilbert problem is proposed with appropriate transformation. Through the special Riemann-Hilbert problem, where the jump matrix is considered to be an identity matrix, the soliton solutions of all integrable equations are explicitly calculated. The specific examples of one-soliton, two-soliton and N-soliton solutions are explicitly presented. (C) 2019 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2019_103569.pdf 650KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次