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Abstract

In this paper, based on the zero curvature equation, an arbitrary order matrix spectral problem is studied and its associated

multi-component cubic-quintic nonlinear Schrödinger integrable hierarchy is derived. In order to solve the multi-component

cubic-quintic nonlinear Schrödinger system, a class of Riemann-Hilbert problem is proposed with appropriate transformation.

Through the special Riemann-Hilbert problem, where the jump matrix is considered to be an identity matrix, the soliton

solutions of all integrable equations are explicitly calculated. The specific examples of one-soliton, two-soliton and N -soliton

solutions are explicitly presented.

Keywords: Multi-component cubic-quintic nonlinear Schrödinger equation, Integrable hierarchy, Riemann-Hilbert

problem, Soliton solution
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1. Introduction

As a branch of the nonlinear science, soliton theory is indispensable and playing increasingly important role in the

nonlinear dynamics. With the development of the soliton theory, there are many methods to solve the solutions of the

integrable equations. Among them, the inverse scattering method and the Riemann-Hilbert method are are two widely used

and effective methods. The original inverse scattering method is the first method to find the exact solution of the soliton5

equation. Based on the Gel’fand-Levitan-Marchenko integral equations, the generalized Fourier method is given and the

Cauchy problem of the integrable equation is tried [1]. Later, the Riemann-Hilbert method was developed, which greatly

simplifies the inverse scattering transform method and provides an equivalent but more straightforward method for solving

integrable equations, especially for generating soliton solutions [2]. Based on Riemann-Hilbert problems, a dressing method

has also been developed to get soliton solutions through gauge transformations [3, 4, 5], and it has been generalized for Lax10

operators in the orthogonal and symplectic Lie algebras [6] and further developed in numerous publications [7, 8]. In recent

years, a large number of integrable equations have been discussed by solving the associated Riemann-Hilbert problems, such

as, the multiple wave interaction equations [2], the coupled Kundu equation [9], the general coupled nonlinear Schrödinger

equations [10], the nonlinear Schrödinger-type equation [11], the Harry Dym equation [12], the generalized Sasa-Satsuma

equation [13], the Dullin-Gottwald-Holm equation [14], the modified nonlinear Schrödinger equation [15], the mKdV systems15

[16, 17, 18] and a six-component fourth-order AKNS system [19].
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The integrable Kundu-Eckhaus (KE) equation[20, 21, 22]

iqt + qxx + 2|q|2q + δ|q|4q − 2iρ1(|q|2)xq = 0

is a generalization of the NLS equation with the cubic and quintic nonlinear terms, which contains the higher-order nonlinear

terms together with the same second-order linear dispersion term, where i is the unit imaginary number, ρ1 is a real

constant, q(x, t) is a complex function that represents the electromagnetic wave, δ = ρ2
1 is the quintic nonlinearity coefficient,

the last term is a nonlinear term which results from the time-retarded induced Raman process and 2ρ1 is the nonlinear20

dispersion. Compared with the KE equations, the multi-component cubic-quintic nonlinear Schrödinger equations possess

soliton solutions with more parametric freedom, which can be expected to model more complex situations in reality.

In this paper, we will study the multi-component cubic-quintic nonlinear Schrödinger equations by the Riemann-Hilbert

method. First, We introduce an arbitrary order matrix spectral problem:

ϕx = Y ϕ, ϕt = T [n]ϕ, Y = iA(λ) + U(u , λ), T [n] = iB[n](λ) + V [n](u , λ), n ≥ 1,

where λ is a spectral parameter, u is a potential vector, ϕ is an (n+ 1)× (n+ 1) matrix eigenfunction, A,B[n] are constant

commuting (n+ 1)× (n+ 1) matrices, and U, V [n] are (n+ 1)× (n+ 1) matrices. The compatibility condition of Lax pairs

is the zero curvature equation

Ytn − T [n]
x + [Y, T [n]] = 0,

where [·, ·] is the matrix commutator.

Second, we adopt the following pair of equivalent matrix spectral problems for studying the Riemann-Hilbert problems,

ψx = i[A(λ), ψ] + U(u , λ)ψ, ψtn = i[B[n](λ), ψ] + V [n](u , λ)ψ.

with the relation between two matrix ϕ and ψ:

ϕ = e−
i
2ρ1

∫ x
−∞ |q |

2dξΛψE, E = eiA(λ)x+iB[n](λ)tn .

where Λ = diag(−1, In). For matrix spectral problems ψ, two bounded analytical matrix eigenfunctions satisfy asymptotic

conditions

ψ±(x, tn, λ)→ In+1, when x, tn → ±∞.

Let C+ represents the upper half-plane: C+ = {z ∈ C|Im(z) > 0}, and C+
0 are the closures of C+. Similarly, C−

represents the lower half-plane: C− = {z ∈ C|Im(z) < 0}, and C−0 are the closures of C−. Based on the matrix eigenfunctions

ψ±(x, tn, λ), we gain two analytical matrix functions J±(x, tn, λ), which are analytical in λ ∈ C± and continuous at C±0 ,

respectively. Then we gain a matrix Riemann-Hilbert problem:

J−(x, tn, λ)J+(x, tn, λ) = G(x, tn, λ), λ ∈ R,

with

G(x, λ) = E(H1 +H2S(λ))(H1 + S−1(λ)H2)E−1,

where S and S−1 are scattering matrices. The normalization conditions for the Riemann-Hilbert problems can be obtained

2
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by the asymptotic behaviors of the matrix functions J± at infinity of λ as

J± → In+1, λ→∞,

which is the canonical normalization conditions

Finally, taking the jump matrix G to be the identity matrix In+1, the resulting Riemann-Hilbert problems can be25

normally solved to generate soliton solutions.

In this paper, we focuse on the multi-component cubic-quintic nonlinear Schrödinger (CQNLS) equation and generate

its soliton solutions by special associated Riemann-Hilbert problems. As can be seen from the above, obtaining a soliton

solution mainly includes two steps [23, 24]: Step 1 is to formulate a Riemann-Hilbert problem with the space variable from

a spatial matrix spectral problem, and Step 2 is to compute soliton solutions by solving special associated Riemann-Hilbert30

problems.

The plan of this paper is as follows. In Section 2, based on zero curvature formulation, we derive the multi-component

CQNLS integrable hierarchies and present their bi-Hamiltonian structures. In Section 3, We discuss the analytical properties

of matrix eigenfunctions for equivalent spatial matrix spectral problems and establish a class of Riemann-Hilbert problems

related to the newly introduced spatial matrix spectral problems. In Section 4, we gain soliton solutions to the multi-35

component CQNLS integrable hierarchies from special associated Riemann-Hilbert problems. In Section 5, we present one-,

two- and N -soliton solutions explicitly and analyze their special properties. In the last section, we give concluding remarks,

along with some further questions.

2. Multi-component cubic-quintic nonlinear Schrödinger integrable hierarchies

2.1. Zero curvature formulation40

We can use zero curvature formulation to generate integrable hierarchies by choosing a square matrix spectral matrix

Y = Y (u , λ) from a given matrix loop algebra with a vector potential u and a spectral parameter λ, whose underlying Lie

algebra could be either semisimple [25, 26] or nonsemisimple[27]. Assume a series solution

T = T (u , λ) =

∞∑

m=0

Tmλ
−m =

∞∑

m=0

Tm(u)λ−m (1)

to the corresponding stationary zero curvature equation

Tx = [Y, T ]. (2)

When the initial matrix T0 is fixed, T is uniquely determined. According to the solution T , we construct a series of Lax45

matrix

T [n] = T [n](u , λ) = (λnT )+ +4n, n ≥ 1, (3)

where the subscript + represents the operation of taking a polynomial part in λ, and 4n, n ≥ 0 are the modification terms.

The appropriateness of selecting 4n is required to generate an integrable hierarchy

utn = Kn(u) = Kn(x, t,u ,ux, · · · ), n ≥ 1, (4)

from the zero curvature equations

Ytn − T [n]
x + [Y, T [n]] = 0, n ≥ 1, (5)

3
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where the matrices Y and T [n] are Lax pair [28] of the n-th evolution equation in the hierarchy (4). The spatial and temporal50

matrix spectral problems

ϕx = Y ϕ = Y (u , λ)ϕ, ϕtn = T [n]ϕ = T [n](u , λ)ϕ, n ≥ 1, (6)

where ϕ is the matrix eigenfunction, and their compatibility condition is the zero curvature equations (5).

Then, we provide a bi-Hamiltonian structure for analyzing the Liouville integrability of the hierarchy (4)[29]:

utn = Kn = J1
δH̃m+1

δu
= J2

δH̃m

δu
, m ≥ 1, (7)

where J1 and J2 are a Hamiltonian pair and
δ

δu
denotes the variational derivative [30]. The Hamiltonian structures can be

usually provided with the help of trace identification [25]:

δ

δu

∫
tr(T

∂Y

∂λ
)dx = λ−γ

∂

∂λ
[λγtr(T

∂Y

∂u
)], γ = −λ

2

d

dλ
ln |tr(T 2)|,

or more generally, the variational identity [27]:

δ

δu

∫
〈T, ∂Y

∂λ
〉dx = λ−γ

∂

∂λ
[λγ〈T, ∂Y

∂u
〉], γ = −λ

2

d

dλ
ln |〈T, T 〉|,

where 〈·, ·〉 is a non-degenerate, symmetric and ad-invariant bilinear form on the underlying matrix loop algebra [31]. The

bi-Hamiltonian structure ensures unlimited commute Lie symmetries {Kn}∞n=0 and conserved quantities {H̃m}∞m=0:55

[Kn1
,Kn2

] = K ′n1
[Kn2

]−K ′n2
[Kn1

] = 0, (8)

{H̃m1 , H̃m2}J =

∫
(
δH̃m1

δu
)TJ

δH̃m2

δu
dx = 0, (9)

where ni,mi ≥ 1, i = 1, 2, J = J1 or J2, and K ′ denotes the Gateaux derivative of K with respect to u : K ′(u)[Y ] =
∂

∂ε
|ε=0K(u + εY,ux + εYx, . . .).

It is known that for an evolution equation with a vector potential u , H̃ =
∫
Hdx is a conserved functional iff

δH̃

δu
is

an adjoint symmetry [32, 33]. Therefore, the Hamiltonian structure links conservative function with adjoint symmetry and

further symmetry. The existence of adjoint symmetry is necessary to permit conservation laws for systems of completely60

nondegenerate differential equations, and a pair of symmetry and adjoint symmetry lead to the conservation laws of any

system of differential equations [34, 35]. When the underlying matrix loop algebra in zero curvature formulation is simple,

the typical integrable hierarchies will be produced [3, 35]; when it’s semisimple, a collection of different integrable hierarchies

will be generated; and when it’s non-semisimple, hierarchies of integrable couplings will be gained [36].

2.2. CQNLS hierarchies with multiple potentials65

In this subsection, we will discuss the multi-component CQNLS integrable hierarchies and their bi-Hamiltonian structures,

which will be use to bulid Riemann-Hilbert problems.

First, we consider an n+ 1 order matrix spectral problem:

ϕx = Y ϕ = Y (u , λ)ϕ, Y =



−iλ+

1

2
iρ1|q |2 q

−q∗ (iλ− 1

2
iρ1|q |2)In


 , (10)

4
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where λ is a spectral parameter and u is a 2n-dimensional potential vector

u = (q , q∗>)>, q = (q1, q2, . . . , qn), q∗ = (q∗1 , q
∗
2 , . . . , q

∗
n)>, (11)

where the superscript ∗ denotes the conjugate and > denotes the transpose.70

When qj = q∗j = 0, 3 ≤ j ≤ n, Eq.(10) transforms into the CQNLS matrix spectral problem [37]. Therefore, we call

Eq.(10) as a multi-component CQNLS matrix spectral problem and its associated hierarchy as a multi-component CQNLS

integrable hierarchy.

Second, assume a solution T :

T =


a b

c d


 , (12)

where a is a scalar, b> and c are n-dimensional columns, and d is an n×n matrix. In order to obtain the multi-component75

CQNLS integrable hierarchies, we use the stationary zero curvature equation corresponding to Eq.(10). By direct calculation,

we gain 



ax = qc + bq∗,

bx = qd− aq − 2b(iλ− 1

2
ρ1|q |2),

cx = dq∗ − q∗a+ 2c(iλ− 1

2
ρ1|q |2),

dx = −q∗b − cq ,

(13)

We expand T as a formal series:

T =


a b

c d


 =

∞∑

m=0

Tmλ
−m, Tm = Tm(u) =


a

[m] b [m]

c[m] d[m]


 , m ≥ 0, (14)

where b [m], c[m] and d[m] are expressed as

b [m] = (b
[m]
1 , b

[m]
2 , . . . , b[m]

n ), c[m] = (c
[m]
1 , c

[m]
2 , . . . , c[m]

n )>, d[m] = (d
[m]
ij )n×n, m ≥ 0. (15)

Then, the Eqs.(13) derives the recursion relations as follows:

b [0] = 0, c[0] = 0, a[0]
x = 0, d[0]

x = 0, (16a)

b [m+1] =
i

2
(a[m]q − qd[m] − ρ1|q |2b [m] + b [m]

x ), (16b)

c[m+1] =
i

2
(d[m]q∗ − q∗a[m] − ρ1|q |2c[m] − c[m]

x ), (16c)

a[m]
x = qc[m] + b [m]q∗, d[m]

x = −c[m]q − q∗b [m], m ≥ 1. (16d)

If we take the initial values80

a[0] = α1, d[0] = α2In, (17)

where α1, α2 are arbitrary real constants, and by this means, all matrices Tm,m ≥ 1, are uniquely determined according to

5
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the recursion relation (16). The coefficients present that

b
[1]
l =

i

2
αql, c

[1]
j = − i

2
αq∗j , a

[1] = 0, d
[0]
jl = 0; (18a)

b
[2]
l =

α

4
(ρ1|q |ql − qlx), c

[2]
l = −α

4
(ρ1|q |q∗j + q∗jx), a[2]

x = −α
4
|q |2, d[2]

jlx =
α

4
q∗j ql; (18b)

b
[3]
l =

iα

8
(−2|q |2ql − ρ2

1|q |4ql + 2ρ1|q |2qlx + ρ1qxq
∗ql + ρ1qq

∗
xql − qlxx), (18c)

c
[3]
l =

iα

8
(2|q |2q∗j + ρ2

1|q |4q∗j + 2ρ1|q |2q∗lx + ρ1q
∗qxq

∗
j + ρ1q

∗
xqq

∗
j + q∗lxx), (18d)

a[3] =
iα

8
(2ρ1|q |4 + qq∗x − qxq

∗), d[3]
jl = − iα

8
(2ρ1|q |2qlq∗j + q∗jxql − q∗j qlx), (18e)

where α = α1 − α2 and 1 ≤ j, l ≤ n. From Eqs.(16), we get a recursion relation for b [m] and c[m]:


 c[m+1]

b [m+1]>


 = Ψ


 c[m]

b [m]>


 , m ≥ 1, (19)

where Ψ is a 2n× 2n matrix integro-differential operator

Ψ =
i

2



−(∂ + ρ1|q |2 +

n∑
j=1

q∗j ∂
−1qj)In − q∗∂−1q −q∗∂−1q∗> − (q∗∂−1q∗>)>

q>∂−1q − (q>∂−1q)> (∂ − ρ1|q |2 +
n∑
j=1

qj∂
−1q∗j )In − q>∂−1q∗>


 (20)

Then, in order to obtain the multi-component CQNLS integrable hierarchies, we take the Lax matrix

T [n] = T [n](u , λ) = (λnT )+ =

n∑

m=0

Tmλ
n−m, n ≥ 1, (21)

where the modification term 4n is equal to zero and Tm is defined in Eq.(14). Then by zero curvature equation (5), we can

gain the multi-component CQNLS integrable hierarchies:85

u tn =


q
>

q∗


 = Kn = 2i


b

[m+1]>

c[m+1]


 , m ≥ 0. (22)

When m = 1, we can gain a nonlinear integrable system from the above hierarchies (22) as follow:

qj,tn =
αi

2
ρ1|q |2qj −

αi

2
qjx, 1 ≤ j ≤ n, (23a)

q∗j,tn = −αi
2
ρ1|q |2q∗j +

αi

2
q∗jx, 1 ≤ j ≤ n, (23b)

When m = 2 and n = 2, the multi-component CQNLS systems (24) can be reduced to the coupled cubic-quintic nonlinear

Schrödinger equations [37].

qj,t2 =
α

2
|q |2qj +

α

4
ρ2|q |4qj +

α

4
qjxx −

α

2
ρ1(|q |2qj)x +

α

4
ρ1(|q |2)xqj , 1 ≤ j ≤ n, (24a)

q∗j,t2 = −α
2
|q |2q∗j −

α

4
ρ2|q |4q∗j −

α

4
q∗jxx −

α

2
ρ1(|q |2qj)x +

α

4
ρ1(|q |2)xqj , 1 ≤ j ≤ n. (24b)

Finally, we analyze the Liouville integrability of the multi-component CQNLS integrable hierarchies (22) through bi-

Hamiltonian structures [32], which can be presented through applying the trace identity [25] or the variational identity

[27].

6
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Depending on the matrix Y , we have

tr(T
∂Y

∂λ
) = a− tr(d) =

∞∑

m=0

(a[m] −
n∑

j=1

d
[m]
jj )λ−m, (25)

and90

tr(T
∂Y

∂u
) =


 c

−b>


 =

∑

m≥0

Gm−1λ
−m. (26)

Plugging these into the trace identity and checking the case of m = 2 tells γ = 0 in the trace identity, and thus, we have

δH̃m

δu
= iGm−1, H̃m = − i

m

∫
(a[m+1] −

n∑

j=1

d
[m+1]
jj )dx, Gm−1 =


 c[m]

−b [m]>


 , m ≥ 1. (27)

The bi-Hamiltonian structure for the multicomponent CQNLS systems is presented as following:

utn = Kn = J1
δH̃m+1

δu
= J2

δH̃m

δu
, m ≥ 1, (28)

where the Hamiltonian pairs (J1, J2 = J1Ψ) are given as follows:

J1 =


 0 −2In

2In 0


 , (29a)

J2 = i




−q>∂−1q + (q>∂−1q)> −(∂ − ρ1|q |2 +
n∑
j=1

qj∂
−1q∗j )In + q>∂−1q∗>

−(∂ + ρ1|q |2 +
n∑
j=1

q∗j ∂
−1qj)In − q∗∂−1q −q∗∂−1q∗> − (q∗∂−1q∗>)>


 . (29b)

Thus, each of the operators Φ = Ψ+ = J2J
−1
1 presents a recursion operator [38] for every hierarchy with a fixed integer

n ≥ 1 in Eq.(23). Adjoint symmetry constraints (or equivalently symmetry constraints) decompose each multicomponent

CQNLS system into two commuting finite-dimensional Liouville integrable Hamiltonian systems [32].95

3. Riemann-Hilbert problem

In this section, the n-th multi-component CQNLS system (22) is the compatibility condition of the following matrix

spectral problems:

ϕx = Y (u , λ)ϕ, (30)

ϕtn = T [n](u , λ)ϕ, (31)

where

Y = iλΛ + U(u , λ), T [n] = iλnΩ + V [n](u , λ), n ≥ 0,

with Λ = diag(−1, In), Ω = diag(α1, α2In), and100

U =



i

2
ρ1|q |2 q

−q∗ − i
2
ρ1|q |2In


 , V [n] =

n∑

m=1

Vmλ
−n−m =

n∑

m=1


a

[m] b [m]

c[m] d[m]


λn−m. (32)

7
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Here q , q∗ are determined in Eq.(11), and a[m], b [m], c[m], d[m], 1 ≤ m ≤ n, are defined by Eq.(15). We can easy find that

the tr(U) 6= 0, when n ≥ 2. So We need an appropriate transformation to make tr(U) = 0.

Let

ϕ̃ = e
i
2ρ1

∫ x
−∞ |q |

2dξΛϕ, q̃ = qeiρ1
∫ x
−∞ |q |

2dξ,

ã[m] = a[m], b̃
[m]

= b [m]eiρ1
∫ x
−∞ |q |

2dξ,

c̃[m] = c[m]e−iρ1
∫ x
−∞ |q |

2dξ, d̃[m] = d[m],

(33)

then substitute into Eqs.(30)–(31), we can get

ϕ̃x = (iλΛ + Ũ(u , λ))ϕ̃ (34)

105

ϕ̃tn = (iλnΩ + Ṽ [n](u , λ))ϕ̃ (35)

where

Ũ =


 0 q̃

−q̃∗ 0


 , Ṽ [n] =

n∑

m=1


ã

[m] b̃
[m]

c̃[m] d̃[m]


λn−m. (36)

Then, we use the Riemann-Hilbert method to discuss the scattering and inverse scattering of the modified multicomponent

CQNLS system [2, 10].

Assume that all the potentials rapidly vanish when x→ ±∞ and satisfy the integrable conditions:

∫ ∞

−∞
|x|m

n∑

j=1

(|q̃i|+ |q̃∗j |)dx ≤ ∞, m = 0, 1. (37)

Without loss of generality, we let110

α = α1 − α2 ≤ 0. (38)

As x→ ±∞, we have the asymptotic behavior from Eqs.(34)–(35): ϕ̃ ∼ eiλΛx+iλnΩtn . Hence it will be convenient to express

ϕ̃ as

ϕ̃ = ψeiλΛx+iλnΩtn , (39)

where the canonical normalization ψ → In+1, when x→ ±∞. Substituting Eq.(39) into Eqs.(34)–(35), we can gain

ψx = iλ[Λ, ψ] + Ũψ (40)

ψtn = iλ[n][Ω, ψ] + ˜V [n]ψ (41)

Applying a generalized Liouville’s formula [39], we can gain115

det ψ = 1, (42)

due to tr(Ũ) = tr(Ṽ ) = 0.

Next, we discuss the Riemann-Hilbert problem of the modified multicomponent CQNLS system (34). In this consid-

eration, the time tn is fixed and is a dummy variable, and thus it will be suppressed. In the scattering problem, we first
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introduce two matrix Jost solutions ψ±(x, λ) of Eq.(40) with the asymptotic conditions

ψ± → In+1, when x→ ±∞, (43)

respectively. From Eq.(42), we see that det ψ± = 1 for all x. Since120

ϕ̃± = ψ±E, E = eiλΛx, (44)

are both solutions of Eq.(34), they are linearly related by a matrix S(λ):

ψ−E = ψ+ES(λ), λ ∈ R, (45)

where S(λ) = (sjl)(n+1)×(n+1) is the scattering matrix. Note that det S(λ) = 1 because of det ψ± = 1.

Then applying the method of variation of parameters as well as the boundary conditions (43), we can transform Eq.(40)

into the following Volterra integral equations for ψ± [2]:

ψ−(λ, x) = In+1 +

∫ x

−∞
eiλΛ(x−y)Ũ(y)ψ−(λ, y)eiλΛ(y−x)dy, (46)

125

ψ+(λ, x) = In+1 −
∫ ∞

x

eiλΛ(x−y)Ũ(y)ψ+(λ, y)eiλΛ(y−x)dy, (47)

Thus, ψ± allows analytical continuations off the real axis λ ∈ R as long as the integrals on the right sides converge. We can

see that the integral equation for the first column of ψ− involves only the exponential factor e2iλ(x−y), which decays because

of y < x in the integral, when λ is in the closed upper half-plane C+
0 , and the integral equation for the last n columns of

ψ+ involves only the exponential factor e−2iλ(x−y), which also decays because of y > x in the integral, when λ is in the

closed upper half-plane C+
0 . Therefore, those n + 1 columns can be analytically continued to the closed upper half-plane130

C+
0 . Similarly, we can see that the last n columns of ψ− and the first column of ψ+ can be analytically continued to the

closed lower half-plane C−0 .

Below we will determine two matrix eigenfunctions J±(x, λ), which are analytically continued to the upper and lower

half-planes, respectively. First, if we express ψ± as a collection of columns,

ψ± = (ψ±1 , ψ
±
2 , · · · , ψ±n+1), (48)

then the matrix Jost solution135

J+ = J+(x, λ) = (ψ−1 , ψ
+
2 , · · · , ψ+

n+1) = ψ−H1 + ψ+H2 (49)

is analytic in λ ∈ C+ and continuous in λ ∈ C+
0 , and the matrix solution

(ψ+
1 , ψ

−
2 , · · · , ψ−n+1) = ψ+H1 + ψ−H2 (50)

is analytic in λ ∈ C− and continuous in λ ∈ C−0 , where H1 and H2 are defined by

H1 = diag(1, 0, · · · , 0︸ ︷︷ ︸
n

), H2 = diag(0, 1, · · · , 1︸ ︷︷ ︸
n

). (51)
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In addition, from Eq.(46)–(47), we see that

J+(x, λ)→ In+1, when λ ∈ C+
0 →∞, (52)

and

(ψ+
1 , ψ

−
2 , · · · , ψ−n+1)→ In+1, when λ ∈ C−0 →∞. (53)

Secondly, in order to construct the analytic counterpart of J+ in the lower half-plane C−, we discuss the adjoint matrix140

spectral problems of Eq.(40):

ψ̃x = −iλ[ψ̃, Λ]− ψ̃Ũ (54)

The inverse matrices ψ̃± = (ψ±)−1 satisfy the above adjoint equation. If we express (ψ±)−1 as a collection of rows:

ψ̃± = (ψ̃±1 , ψ̃
±
2 , · · · , ψ̃±n+1)>, (55)

Then, we can show that the adjoint matrix Jost solutions

J− = (ψ̃−1 , ψ̃
+
2 , · · · , ψ̃+

n+1)> = H1ψ̃
− +H2ψ̃

+ = H1(ψ−)−1 +H2(ψ+)−1 (56)

is analytic in λ ∈ C− and continuous in λ ∈ C−0 , and the other matrix solution

(ψ̃+
1 , ψ̃

−
2 , · · · , ψ̃−n+1)> = H1ψ̃

+ +H2ψ̃
− = H1(ψ+)−1 +H2(ψ−)−1 (57)

is analytic in λ ∈ C+ and continuous in λ ∈ C+
0 . Similarly, we can determine that145

J−(x, λ)→ In+1, when λ ∈ C−0 →∞, (58)

and

(ψ̃+
1 , ψ̃

−
2 , · · · , ψ̃−n+1)→ In+1, when λ ∈ C+

0 →∞. (59)

Now we have constructed the two matrix functions J+(x, λ) and J−(x, λ) which are analytic in C+ and C−, and

continuous in C+
0 and C−0 , respectively. On the real line, we can easily gain from Eqs.(45), (49) and (56):

J+(x, λ) = J−(x, λ)G(x, λ), λ ∈ R, (60)

where

G(x, λ) = E(H1 +H2S(λ))(H1 + S−1(λ)H2)E−1 = E




1 ŝ12 ŝ13 · · · ŝ1,n+1

s21 1 0 · · · 0

s31 0 1 · · · 0
...

...
...

. . .
...

sn+1,1 0 0 · · · 1




E−1 (61)

with S−1(λ) = (S(λ))−1 = (ŝjl)(n+1)×(n+1). The Eq.(60) presents a matrix Riemann-Hilbert problem we would like to build150

for the modified multicomponent CQNLS systems. The asymptotic properties

J±(x, λ)→ In+1, when λ ∈ C±0 →∞, (62)
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generate the canonical normalization conditions for the above presented Riemann-Hilbert problems.

To complete the direct scattering transform, let us evaluate the derivative of Eq.(44) with time tn and use the vanishing

conditions of the potentials at infinity of tn. Clearly, we can prove that the scattering matrix S has to satisfy

Stn = iλn[Ω, S], (63)

which tells that the time evolution of the time-dependent scattering coefficients are given by155

s1,j = s1,j(λ, 0)eiβλ
ntn , sj,1 = sj,1(λ, 0)e−iβλ

ntn , 2 ≤ j ≤ n+ 1, (64)

and all other scattering coefficients are independent of the time variable tr.

4. Soliton solutions by the Riemann-Hilbert problem

In this section, we mainly discuss the soliton solution of the Riemann-Hilbert problem with detJ+ = 0 and detJ− = 0.

The uniqueness of solutions to each associated Riemann-Hilbert problem (60) does not hold unless the zeros of det J± in

the upper and lower half-planes are specified and the structures of ker J± at those zeros are determined in Ref.[40, 41, 42].160

Recalling the definitions of J± in Eq.(49) and Eq.(56) as well as the scattering relation in Eq.(45), we see that

detJ+(x, λ) = s11(λ), detJ−(x, λ) = ŝ11(λ), (65)

where

ŝ11 = (S−1)11 =

∣∣∣∣∣∣∣∣∣∣∣∣

s22 s23 · · · s2,n+1

s32 s33 · · · s3,n+1

...
...

. . .
...

sn+1,2 sn+1,3 · · · sn+1,n+1

∣∣∣∣∣∣∣∣∣∣∣∣

. (66)

Assume that the function s11 hasN zeros {λk ∈ C+, 1 ≤ k ≤ N}, and the function ŝ11 hasN zeros {λ̂k ∈ C−, 1 ≤ k ≤ N},
where N is the number of these zeros. In order to compute N -soliton solutions simply, we assume that all zeros, λk and

λ̂k, 1 ≤ k ≤ N , are simple. In this case, each of ker J+(x, λk), 1 ≤ k ≤ N , contains only a single basis column vector165

vk, 1 ≤ k ≤ N ; and each of ker J−(x, λ̂k), 1 ≤ k ≤ N , a single basis row vector v̂k, 1 ≤ k ≤ N . So, we have

J+(x, λk)vk = 0, v̂kJ
−(x, λ̂k) = 0, 1 ≤ k ≤ N. (67)

It is known that the Riemann-Hilbert problems (60) with the canonical normalization conditions in Eq.(62) and the zero

structures in Eq.(67) can be solved explicitly in Ref.[2, 43]. To compute N -soliton solutions, we take G = In+1 in each above

Riemann-Hilbert problem. This can be realized if we take that sj,1 = ŝ1,j = 0, 2 ≤ j ≤ n + 1, which equivalently requires

that no reflection exists in the scattering problem. This resulting special Riemann-Hilbert problem has the solutions:170

J+(x, λ) = In+1 −
N∑

k,l=1

vk(M−1)klv̂ l

λ− λ̂l
, J−(x, λ) = In+1 +

N∑

k,l=1

vk(M−1)klv̂ l
λ− λl

, (68)

where M is a square matrix with entries being defined by

M = (mkl)N×N , mkl =
v̂kv l

λl − λ̂k
, 1 ≤ k, l ≤ N. (69)
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Because the zeros λk and λ̂k are constants, i.e., space and time independent, we can easily determine the spatial and

temporal evolutions for the vectors, vk(x, tn) and v̂k(x, tn), 1 ≤ k ≤ N , in the kernels ker J±. For example, let us compute

the x-derivative of both sides of the first set of equations in Eq.(67). By Eq.(40) and the first set of equations in Eq.(67),

we can derive175

J+(x, λk)(
dvk
dx
− iλkΛvk) = 0, 1 ≤ k ≤ N. (70)

It then follows that for each 1 ≤ k ≤ N , the vector
dvk
dx
− iλkΛvk must be in the kernel of J+(x, λk) and so a constant

multiple of the vector vk. Without loss of generality, we consider the simplest case and assume

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N. (71)

The time dependence of vk:
dvk
dtn

= iλnkΩvk, 1 ≤ k ≤ N, (72)

can be worked out similarly by applying the temporal matrix spectral problem (41). To sum up, we can have

vk(x, tn) = eiλkΛx+iλn
kΩtnvk0 , 1 ≤ k ≤ N, (73)

v̂k(x, tn) = v̂k0e
−iλ̂kΛx−iλ̂n

kΩtn , 1 ≤ k ≤ N, (74)

where vk0 and v̂k0 , 1 ≤ k ≤ N , are arbitrary constant column and row vectors, respectively.

Finally, we expand J+ at large λ as180

J+(x, λ) = In+1 +
1

λ
J+

1 (x) + O(
1

λ2
), λ→∞, (75)

plugging this series expansion into Eq.(40) and balancing O(1) terms generate

Ũ = −i[Λ, J+
1 ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2(J+
1 )12 2(J+

1 )13 · · · 2(J+
1 )1,n+1

−2(J+
1 )21 0 0 · · · 0

−2(J+
1 )31 0 0 · · · 0
...

...
. . .

...

−2(J+
1 )n+1,1 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (76)

where J+
1 = ((J+

1 )jl)(n+1)×(n+1). In other words, the 2n potentials q̃j and q̃∗j , 1 ≤ j ≤ n, can be evaluated as follows:

q̃j = 2i(J+
1 )1,j+1, q̃∗j = −2i(J+

1 )j+1,1, 1 ≤ j ≤ n. (77)

Now from the λ-dependence of the solutions in Eq.(68), we have

J+
1 = −

N∑

k,j=1

vk(M−1)kj v̂ j , (78)

and thus further through the solution expressions in Eq.(77), obtain the N -soliton solution to the modified multi-component

CQNLS system:185

q̃j = −2i

N∑

k,l=1

vk,1(M−1)klv̂ l,j+1, q̃∗j = 2i

N∑

k,l=1

vk,j+1(M−1)klv̂ l,1, 1 ≤ j ≤ n, (79)
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where the matrix M is defined by Eq.(69), and vk = (vk,1, vk,2, · · · , vk,n+1)> and v̂k = (v̂k,1, v̂k,2, · · · , v̂k,n+1), 1 ≤ k ≤ N ,

respectively.

Then, we prove that the two components in the presented solutions in Eq.(79) are conjugate to each other[18]. First, let

P = iŨ , Ũ =


 0 q̃

−q̃∗ 0


 , (80)

. Then we easy gain that190

P † = P, (81)

where † stands for the Hermitian transpose of a matrix.

If ψ(λ) is a matrix eigenfunction of the spectral problem in Eq.(40), then in addition to a known matrix adjoint

eigenfunction ψ−1(λ∗), we have another matrix adjoint eigenfunction

ψ̃(λ∗) = ψ†(λ∗), (82)

associated with an eigenvalue λ∗, ie, ψ†(λ∗) solves the adjoint spectral problem in Eq.(54) with λ replaced with λ∗. Therefore,

upon observing the asymptotic properties for ψ± at infinity of λ, the uniqueness of solutions tells195

ψ†(λ∗) = ψ−1(λ∗), ψ = ψ±. (83)

Further from the definitions of J± in Eqs.(49) and (56), we see that the two matrix solutions J± satisfy the involution

relation

(J+)†(λ∗) = J−(λ∗), (84)

and from the definition of the scattering matrix S(λ) in Eq.(45), we see that the scattering matrix S(λ) has the involution

property

S†(λ∗) = S−1(λ∗). (85)

According to Eq.(84), we have s11(λ∗) = ŝ11(λ) through Eq.(65), and thus, the zeros of det J± satisfy the involution relation:200

λ̂k = λ∗k, 1 ≤ k ≤ N. (86)

To obtain involution eigenvectors vk and v̂k, we check the Hermitian transpose of the first set of equations in Eq.(67):

0 = v†k(J+(λk))† = v†kJ
−(λ̂k), 1 ≤ k ≤ N, (87)

where we have used Eqs.(84) and (86). Therefore, we can take

v̂k = v†k, 1 ≤ k ≤ N, (88)

as the solutions to the second set of equations in Eq.(67). It follows that we have the following involution eigenvectors:

vk(x, tr) = eiλkΛx+iλr
kΩtrvk0 , 1 ≤ k ≤ N, v̂k(x, tr) = v†k0e

−iλ∗kΛx−iλ∗rk Ωtr , 1 ≤ k ≤ N, (89)

where vk0 are arbitrary constant column vectors as before. Then, we can gain that the two components in the presented205

solutions in Eq.(79) are conjugate to each other.
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Then we can gain the N -soliton solution to the multicomponent CQNLS system (22) by the transformation qj =

q̃je
−iρ1

∫ x
−∞ |q |

2dξ, and easy find |qj | = |q̃j |.

5. N-Soliton Solution

When G = I, the continuous scattering data (ŝ1,j , sj,1), 2 ≤ j ≤ n+ 1 is zero, and the corresponding scattering problem210

is called reflectionless. The corresponding solution q̃ is called a reflectionless potential. This solution can be written out

explicitly. Thus, from Eq.(76) we have

J+
1 (x, tn) = −

N∑

k,j=1

vk(M−1)kj v̂ j , (90)

and

q̃j = −2i

N∑

k,l=1

vk,1(M−1)klv̂ l,j+1, 1 ≤ j ≤ n, (91)

Here vectors vk are given by Eq.(73), v̂ j = v †j , and matrix M is given by Eq.(69). Without loss of generality, we let

vk0 = (ck,1, ck,2, · · · , ck,n+1)>. In addition, we introduce the notation215

θk = iλkx+ iλnk tn, and α1 = −1, α2 = 1. (92)

Then the above solution q̃ can be written out explicitly as

q̃j = −2i

N∑

k,l=1

ck,1c
∗
l,j+1e

θ∗l −θk(M−1)kl, 1 ≤ j ≤ n, (93)

where the elements of the N ×N matrix M are given by

Mkl =
1

λl − λ̂k
(

n∑

m=1

(c∗k,m+1cl,m+1)eθ
∗
k+θl + c∗k,1cl,1e

−(θ∗k+θl)). (94)

Notice that M−1 can be expressed as the transpose of M ’s cofactor matrix divided by detM . We examine properties of

these N -soliton solutions next.

5.1. Single-soliton solutions220

When N = 1, the solution (93) is

q̃j = −2i(λ1 − λ∗1)
c11c

∗
1,j+1e

θ∗1−θ1

|c11|2e−(θ∗1+θ1) +
n∑

m=1
|c1,m+1|2eθ∗1+θ1

, 1 ≤ j ≤ n. (95)

Letting

λ1 = ξ + iη, c1,1 = e−2ηx0+iσ0 , c1,m+1 = 1, 1 ≤ m ≤ n, (96)

where ξ, η are the real and imaginary parts of ξ0, x0 and σ0 are real parameters, then the above solution can be rewritten

as

q̃j =
2√
n
ηsech[2(−ηx+

∑

0≤m1≤n
(−1)

m1+1
2 Cm1

n ηm1ξn−m1tn+ηx0)+n0] exp{−2iξx+2i
∑

0≤m2≤n
(−1)

m2+2
2 Cm2

n ηm2ξn−m2tn+iσ0},

(97)

where en0 =
√
n, m1 is odd number and m2 is even number.225
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This solution is a solitary wave in the modified multi-component CQNLS system (34). Its amplitude function |q̃j | has the

shape of a hyperbolic secant with peak amplitude
2√
n
η, and its velocity is -2

n∑
m1

Cm1
n (−1)

m1+1
2 ηm1ξn−m1 . The phase of this

solution depends linearly on both space x and time tn. The spatial gradient of the phase is proportional to the speed of the

wave. Parameters x0 and σ0 are the initial location and phase of this solitary wave. This solution is called a single-soliton

solution in the modified multicomponent CQNLS system (34).230

5.2. Two-soliton solutions

When N = 2, the solution (93) can also be written out explicitly. Here instead of giving that complicated expression,

we show two typical solution behaviors, one for the case of ξ1 6= ξ2, and the other one for the case of ξ1 = ξ2. Here

λk = ξk + iηk, k = 1, 2, (98)

i.e., ξk and ηk are the real and imaginary parts of λk. Without loss of generality, we only give the figures fo |q1| and choose

the solution parameters in Eqs.(93)–(94) as follows235

λ1 = 1 + i, λ2 = −1− 0.5i, c1,1 = c2,1 = c1,2 = c2,2 = c1,3 = c2,3 = 1, j = 1 (99)

while in Fig.1(b), the solution parameters are

λ1 = 0.5 + i, λ2 = 0.5− 0.7i, c1,1 = c2,1 = c1,2 = c2,2 = c1,3 = c2,3 = 1, j = 1 (100)

(a) (b)

Figure 1: Two-soliton solutions |q1| in the modified multicomponent CQNLS system: (a) collision, where Re(λ1) 6= Re(λ2); (b) bound stste, were

Re(λ1) = Re(λ2).

In the first case (ξ1 6= ξ2), we see from Fig.1(a) that as tn →∞, the solution consists of two single-solitons which are far

apart and moving toward each other. When they collide, they interact strongly. But when tn →∞, these solitons re-emerge

out of interactions without any change of shape and velocity, and there is no energy radiation emitted to the far field. Thus

the interaction of these solitons is elastic. This elastic interaction is a remarkable property which signals that the modified240

multi-component CQNLS system (34) is integrable. There is still some trace of the interaction however. Indeed, after the

interaction, each soliton acquires a position shift and a phase shift. The position of each soliton is always shifted forward,

as if the soliton accelerates during interactions.
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Fig.1(a) is typical of all two-soliton solutions with ξ1 6= ξ2. To show this fact, we analyze the asymptotic states of the

solution (91) as tn → ±∞. Without loss of generality, let us assume that ξ1 > ξ2. This means that at tn = −∞, soliton-1245

is on the right side of soliton-2 and moves slower. Note also that ηk > 0 since λk ∈ C+.

Re(θ1) = −η1(x+
∑

0≤m1≤n
Cm1
n ξn−m1

1 (iη1)m1−1tn) = O(1). (101)

Since

Re(θ2) = −η2(x+
∑

0≤m1≤n
Cm1
n ξn−m1

2 (iη2)m1−1tn)

= −η2(x+
∑

0≤m1≤n
Cm1
n ξn−m1

1 (iη1)m1−1tn)− η2(
∑

0≤m1≤n
Cm1
n ξn−m1

2 (iη2)m1−1 −
∑

0≤m1≤n
Cm1
n ξn−m1

1 (iη1)m1−1)tn,

(102)

where m1 is odd number.

In the limit tn → −∞, we have

Re(θ1)� Re(θ2). (103)

In this case, we have to consider separately the two regions (1−) and (2−) defined below. It is easily seen that q̃j ' 0 (1 ≤250

j ≤ n) in all other regions.

(1−) finite Re(θ1), Re(θ2)→ −∞
In this case, the dominant terms are those which contain the factor e−(θ∗2+θ2). Then, the asymptotic state of the solution

(93) is

q̃j(x, t) ' −2i(λ1 − λ∗1)
c1,1c

∗
1,j+1c

−
1 e

θ∗1−θ1

|c1,1|2e−(θ∗1+θ1) + |c−1 |2(
n∑

m=1
|c1,m+1|2)eθ

∗
1+θ1

,

=
2√
n
η1sech[2(−η1x+

∑

0≤m1≤n
(−1)

m1+1
2 Cm1

n ηm1
1 ξn−m1

1 tn + η1x0) + n1] exp{−2iξ1x+ 2i
∑

0≤m2≤n
(−1)

m2+2
2 Cm2

n ηm2
1 ξn−m2

1 tn + iσ0},

(104)

where c1,1 = e−2ηx0+iσ0 , c1,m+1 = 1, 1 ≤ m ≤ n,
√
nc−1 = en1 , c−1 =

λ2 − λ∗1
λ∗2 − λ∗1

, m1 is odd number and m2 is even number.255

Comparing this expression with Eq.(95), we see that this asymptotic solution is a single-soliton solution with peak amplitude
2√
n
η1, and its velocity is -2

n∑
m1

Cm1
n (−1)

m1+1
2 ηm1

1 ξn−m1
1 .

(2−) finite Re(θ2), Re(θ1)→ +∞
In this case, the dominant terms are those which contain the factor e(θ∗1+θ1). Then, the asymptotic state of the solution

(93) is260

q̃j(x, t) ' −2i(λ2 − λ∗2)

(c2,2c
∗
2,j+1

n∑
m=1
|c1,m+1|2 − c2,1c∗1,j+1

λ1 − λ∗1
λ1 − λ∗2

n∑
m=1

c∗2,m+1c1,m+1)eθ
∗
2−θ2

|c−2 |2
n∑

m=1
|c1,m+1|2|c2,1|2e−(θ∗2+θ2) + (

n∑
m1=1

n∑
m2=1

|c1,m1+1|2|c2,m2+1|2)eθ
∗
2+θ2

=
2√
n
η2sech[2(−η2x+

∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

2 ξn−m1
2 tn) + n2] exp{−2iξ2x+ 2i

∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

2 ξn−m2
2 tn},

(105)

where c2,1 = c1,m+1 = c2,m+1 = 1, 1 ≤ m ≤ n,
√
n

c−2
= en2 , c−2 =

λ1 − λ∗2
λ∗1 − λ∗2

, m1 is odd number and m2 is even number.
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In the limit tn → +∞, we have

Re(θ1)� Re(θ2). (106)

In this case, we have to consider separately the two regions (1+) and (2+) defined below. It is easily seen that q̃j ' 0 (1 ≤
j ≤ n) in all other regions.

(1+) finite Re(θ1), Re(θ2)→ +∞.265

In this case, the dominant terms are those which contain the factor e(θ∗2+θ2). Then, the asymptotic state of the solution

(93) is

q̃j(x, t) ' −2i(λ1 − λ∗1)

c1,1(c∗1,j+1

n∑
m=1
|c2,m+1|2 − c∗2,j+1

λ2 − λ∗2
λ2 − λ∗1

n∑
m=1

c∗1,m+1c2,m+1)eθ
∗
1−θ1

n∑
m=1
|c2,m+1|2|c1,1|2e−(θ∗1+θ1) + |c+|2(

n∑
m1=1

n∑
m2=1

|c1,m1+1|2|c2,m2+1|2)eθ
∗
1+θ1

=
2√
n
η1sech[2(−η1x+

∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

1 ξn−m1
1 tn + η1x0) + n3] exp{−2iξ1x+ 2i

∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

1 ξn−m2
1 tn + iσ0},

(107)

where c1,1 = e−2ηx0+iσ0 , c1,m+1 = c2,m+1 = 1, 1 ≤ m ≤ n, √nc+1 = en3 , c+1 =
λ∗2 − λ∗1
λ2 − λ∗1

, m1 is odd number and m2 is even

number. This is also a single-soliton solution with velocity -2
n∑
m1

Cm1
n (−1)

m1+1
2 ηm1

1 ξn−m1
1 and peak amplitude

2√
n
η1.

(2+) finite Re(θ2), Re(θ1)→ −∞270

In this case, the dominant terms are those which contain the factor e−(θ∗1+θ1). Then, the asymptotic state of the solution

(93) is

q̃j(x, t) ' −2i(λ2 − λ∗2)
c+2 c2,1c

∗
2,j+1e

θ∗2−θ2
n∑

m=1
|c2,m+1|2eθ∗2+θ2 + |c+2 |2|c2,1|2e−(θ∗2+θ2)

=
2√
n
η2sech[2(−η2x+

∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

2 ξn−m1
2 tn) + n4] exp{−2iξ2x+ 2i

∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

2 ξn−m2
2 tn},

(108)

where c2,1 = c2,m+1 = 1, 1 ≤ m ≤ n,
√
n

c+2
= en4 , c+2 =

λ2 − λ1

λ2 − λ∗1
, m1 is odd number and m2 is even number.

Taking the sum of Eq.(104) and Eq.(105), or Eq.(107) and Eq.(108), we arrive at the following theorem 1.

Theorem 1 The asymptotic forms of the two-soliton solution of the n-th multi-component CQNLS system are as follows275

(see also Fig. 2):

as tn → −∞,

q̃j(x, tn) ' 2√
n
η1sech[2(τ1 + η1x0) + n1] exp{$1 + iσ0}+

2√
n
η2sech(2τ2 + n2) exp{$2}, (109)

as tn → +∞,

q̃j(x, tn) ' 2√
n
η1sech[2(τ1 + η1x0) + n3] exp{$1 + iσ0}+

2√
n
η2sech(2τ2 + n4) exp{$2}, (110)
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where

τ1 = −η1x+
∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

1 ξn−m1
1 tn,

τ2 = −η2x+
∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

2 ξn−m1
2 tn,

$1 = −2iξ1x+ 2i
∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

1 ξn−m2
1 tn,

$2 = −2iξ2x+ 2i
∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

2 ξn−m2
2 tn.

with c1,1 = e−2ηx0+iσ0 , c2,1 = c1,m+1 = c2,m+1 = 1, 1 ≤ m ≤ n,
√
nc−1 = en1 ,

√
n

c−2
= en2 ,

√
nc+1 = en3 ,

√
n

c+2
= en4 , c−1 =

λ2 − λ∗1
λ∗2 − λ∗1

, c−2 =
λ1 − λ∗2
λ∗1 − λ∗2

, c+1 =
λ∗2 − λ∗1
λ2 − λ∗1

, c+2 =
λ2 − λ1

λ2 − λ∗1
, m1 is odd number and m2 is even number.280

Theorem 1 defines the collision laws of two solitons in the n-th multi-component CQNLS system.

q̃j '
2√
n
η1sech(2τ1 + 2η1x0 + n1)e$1+iσ0

q̃j '
2√
n
η1sech(2τ1 + 2η1x0 + n3)e$1+iσ0

q̃j '
2√
n
η2sech(2τ2 + n2)e$2

q̃j '
2√
n
η2sech(2τ2 + n4)e$2

interaction
range

soliton−1

soliton−1

soliton−2

soliton−2

tn

Figure 2: Two-soliton collision in the n-th multicomponent CQNLS system

This indicates that this soliton does not change its shape and velocity after collision. Its position and phase have shifted,

however, as Fig.1(a) has shown. The position shift is

4x01 = −
√
n

2η1
(ln |c+| − ln |c−|) =

√
n

η1
ln |λ2 − λ∗1

λ∗1 − λ∗2
|, (111)

and the phase shift is

4σ01 = arg(c+)− arg(c−) = −2 arg(
λ2 − λ∗1
λ∗1 − λ∗2

). (112)

Notice that 4x01 < 0 since λk ∈ C+, and thus the (slower) soliton-1 acquires a negative position shift.285

5.3. N-soliton solutions

In this subsection, we compute the asymptotic forms of the N -soliton solution in the limits t→ ∓∞ and simplify them

as much as possible.
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We first rewrite the N -soliton solution (93) before considering the limits t→ ∓∞.

q̃j = −2i

N∑

k,l=1

ck,1c
∗
l,j+1e

θ∗l −θk(M−1)kl

= −2i
1

detM

N∑

k,l=1

M̃klck,1c
∗
l,j+1e

θ∗l −θk

= −2i
1

detM
c∗1,j+1e

θ∗1

∣∣∣∣∣∣∣∣∣∣∣∣

c11e
−θ1 c21e

−θ2 · · · cN1e
−θN

M21 M22 · · · M2N

...
...

...
...

MN1 MN2 · · · MNN

∣∣∣∣∣∣∣∣∣∣∣∣

− 2i
1

detM
c∗2,j+1e

θ∗1

∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 · · · M1N

c11e
−θ1 c21e

−θ2 · · · cN1e
−θN

...
...

...
...

MN1 MN2 · · · MNN

∣∣∣∣∣∣∣∣∣∣∣∣

· · · − 2i
1

detM
c∗N,j+1e

θ∗N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 · · · M1N

M21 M22 · · · M2N

...
...

...
...

MN−1,1 MN−1,2 · · · MN−1,N

c11e
−θ1 c21e

−θ2 · · · cN1e
−θN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(113)

when ξ1 6= ξ2 6= · · · 6= ξN , and investigate the asymptotic behavior of q̃j(x, t) in the limit t→ ∓∞. Without loss of generality,290

let us assume that ξ1 > ξ2 > · · · > ξN . In this case, when t→ −∞, we have

Re(θ1)� Re(θ2)� · · · � Re(θN), (114)

and we can consider separately N region (1−)–(N−) with the following definition

(1−) finite Re(θ1),Re(θ2),Re(θ3), · · · ,Re(θN ) → −∞, under this choice, the dominant terms are those which contain

the factor e−(θ2+θ∗2+θ3+θ∗3+···+θN+θ∗N ). Then the numerator of q̃j(x, t) with the factor e−(θ2+θ∗2+θ3+θ∗3+···+θN+θ∗N ) is

−2ic∗1,j+1c11

N∏

k=2

|ck,1|2eθ
∗
1−θ1

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

1
λ2−λ∗1

1
λ2−λ∗2

· · · 1
λ2−λ∗N

...
...

...
...

1
λN−λ∗1

1
λN−λ∗2

· · · 1
λN−λ∗N

∣∣∣∣∣∣∣∣∣∣∣∣

(115)

and the denominator of q̃j(x, t) with the factor e−(θ2+θ∗2+θ3+θ∗3+···+θN+θ∗N ) is295

1

λ1 − λ∗1

(
n∑

m=1

|c1,m+1|2eθ1+θ∗1

)
N∏

k=2

|ck,1|2

∣∣∣∣∣∣∣∣∣

1
λ2−λ∗2

1
λ3−λ∗2

· · · 1
λN−λ∗2

...
...

...
...

1
λ2−λ∗N

1
λ3−λ∗N

· · · 1
λN−λ∗N

∣∣∣∣∣∣∣∣∣

+

N∏

k=1

|ck,1|2e−θ1−θ
∗
1

∣∣∣∣∣∣∣∣∣∣∣∣

1
λ1−λ∗1

1
λ2−λ∗1

· · · 1
λN−λ∗1

1
λ1−λ∗2

1
λ2−λ∗2

· · · 1
λN−λ∗2

...
...

...
...

1
λ1−λ∗N

1
λ2−λ∗N

· · · 1
λN−λ∗N

∣∣∣∣∣∣∣∣∣∣∣∣

(116)
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then the asymptotic state of the solution (93) is

q̃j(x, t) ' −2i(λ1 − λ∗1)
c1,1c

∗
1,j+1c

−
1 e

θ∗1−θ1

|c1,1|2e−θ1−θ∗1 + |c−1 |2
(

n∑
m=1
|c1,m+1|2

)
eθ
∗
1+θ1

=
2√
n
η1sech[2(−η1x+

∑

0≤m1≤n
(−1)

m1+1
2 Cm1

n ηm1
1 ξn−m1

1 tn) + n−1 ] exp{−2iξ1x+ 2i
∑

0≤m2≤n
(−1)

m2+2
2 Cm2

n ηm2
1 ξn−m2

1 tn},

(117)

where c1,1 = c1,m+1 = 1, 1 ≤ m ≤ n,√nc−1 = en
−
1 , c−1 =

N∏
k 6=1

λ1−λ∗k
λ1−λk

, m1 is odd number and m2 is even number.

(L−) Re(θ1), · · · ,Re(θL−1) → +∞, finite Re(θL),Re(θL+1), · · · ,Re(θN ) → −∞, L = 2, · · · , N − 1, under this choice,

the dominant terms are those which contain the factoreθ1+θ∗1+···+θL−1+θ∗L−1−(θL+1+θ∗L+1+···+θN+θ∗N ). Then, the asymptotic

state of the solution (93) is300

q̃j(x, t) ' −2i(λL − λ∗L)

N∏
k 6=L

(cL,2c
∗
L,j+1

N∏
k1 6=L

n∑
m=1
|ck1,m+1|2 − cL,1

λk − λ∗k
λk − λ∗L

N∏
k1 6=L

c∗k1,j+1

n∑
m=1

c∗L,m+1ck1,m+1)eθ
∗
L−θL

|c−L |2
N∏

k1 6=L

n∑
m=1
|ck1,m+1|2|cL,1|2e−(θ∗L+θL) +

N∏
k1 6=L

(
n∑

m1=1

n∑
m2=1

|ck1,m1+1|2|cL,m2+1|2)eθ
∗
L+θL

=
2√
n
ηLsech[2(−ηLx+

∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

L ξn−m1

L tn) + n−L ] exp{−2iξLx+ 2i
∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

L ξn−m2

L tn},

(118)

where cL,1 = ck1,m+1 = cL,m+1 = 1, 1 ≤ m ≤ n,
√
n

c−L
= en

−
L , c−L =

N∏
k 6=L

λk − λ∗L
λ∗k − λ∗L

, m1 is odd number and m2 is even number.

(N−) Re(θ1), · · · ,Re(θN−1) → +∞, finite Re(θN ), under this choice, the dominant terms are those which contain the

factoreθ1+θ∗1+···+θN−1+θ∗N−1 . With calculations similar to those in the case (L−), we obtain the asymptotic form of q̃ given

by Eq.(118) with L = N .

In this case, when t→ +∞, we have305

Re(θ1)� Re(θ2)� · · · � Re(θN), (119)

and we can consider separately N region (1+)–(N+) with the following definition

(1+) finite Re(θ1),Re(θ2),Re(θ3), · · · ,Re(θN ) → +∞, under this choice, the dominant terms are those which contain

the factor eθ2+θ∗2+θ3+θ∗3+···+θN+θ∗N . Then, the asymptotic state of the solution (93) is

q̃j(x, t) ' −2i(λ1 − λ∗1)

N∏
k 6=1

c1,1(c∗1,j+1

N∏
k1 6=1

n∑
m=1
|ck1,m+1|2 −

λk − λ∗k
λk − λ∗1

N∏
k1 6=1

c∗k1,j+1

n∑
m=1

c∗1,m+1ck1,m+1)eθ
∗
1−θ1

N∏
k 6=1

n∑
m=1
|ck1,m+1|2|c1,1|2e−(θ∗1+θ1) + |c+1 |2

N∏
k1 6=1

(
n∑

m1=1

n∑
m2=1

|c1,m1+1|2|ck1,m2+1|2)eθ
∗
1+θ1

=
2√
n
η1sech[2(−η1x+

∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

1 ξn−m1
1 tn) + n+

1 ] exp{−2iξ1x+ 2i
∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

1 ξn−m2
1 tn},

(120)

where c1,1 = c1,m+1 = ck1,m+1 = 1, 1 ≤ m ≤ n, √nc+1 = en
+
1 , c+1 =

N∏
k 6=1

λ∗k − λ∗1
λk − λ∗1

, m1 is odd number and m2 is even number.

(L+) Re(θ1), · · · ,Re(θL−1) → −∞, finite Re(θL),Re(θL+1), · · · ,Re(θN ) → +∞, L = 2, · · · , N − 1, under this choice,310

the dominant terms are those which contain the factor e−(θ1+θ∗1+···+θL−1+θ∗L−1)+θL+1+θ∗L+1+···+θN+θ∗N . Then, the asymptotic
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state of the solution (93) is

q̃j(x, t) ' −2i(λL − λ∗L)
c+LcL,1c

∗
L,j+1e

θ∗L−θL
n∑

m=1
|cL,m+1|2eθ∗L+θL + |c+L |2|cL,1|2e−(θ∗L+θL)

=
2√
n
ηLsech[2(−ηLx+

∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

L ξn−m1

L tn) + n+
L ] exp{−2iξLx+ 2i

∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

L ξn−m2

L tn},

(121)

where cL,1 = cL,m+1 = 1, 1 ≤ m ≤ n,
√
n

c+L
= en

+
L , c+L =

N∏
k 6=L

λL − λk
λL − λ∗k

, m1 is odd number and m2 is even number.

(N+) Re(θ1), · · · ,Re(θN−1) → −∞, finite Re(θN ), under this choice, the dominant terms are those which contain the

factore−(θ1+θ∗1+···+θN−1+θ∗N−1). With calculations similar to those in the case (L+), we obtain the asymptotic form of q̃ given315

by Eq.(121) with L = N .

Taking the sum of Eq.(117) and Eq.(118), or Eq.(120) and Eq.(121), we arrive at the following theorem 2.

Theorem 2 The asymptotic forms of the N-soliton solution of the n-th multi-component CQNLS system are as follows (see

also Fig. 3):

as tn → −∞,320

q̃j(x, tn) ' 2√
n

N∑

l=1

ηlsech(2τl + n−l ) exp{$l}, (122)

as tn → +∞,

q̃j(x, tn) ' 2√
n

N∑

l=1

ηlsech(2τl + n+
l ) exp{$l}, (123)

where

τl = −ηlx+
∑

0≤m1≤n
Cm1
n (−1)

m1+1
2 ηm1

l ξn−m1

l tn,

$l = −2iξlx+ 2i
∑

0≤m2≤n
Cm2
n (−1)

m2+2
2 ηm2

l ξn−m2

l tn,

with ck,m+1 = 1, 0 ≤ m ≤ n, 1 ≤ k ≤ N,
√
nc−1 = en

−
1 , c−1 =

N∏
k 6=1

λ1−λ∗k
λ1−λk

,

√
n

c−L
= en

−
L , c−L =

N∏
k 6=L

λk − λ∗L
λ∗k − λ∗L

,
√
nc+1 =

en
+
1 , c+1 =

N∏
k 6=1

λ∗k − λ∗1
λk − λ∗1

,

√
n

c+L
= en

+
L , c+L =

N∏
k 6=L

λL − λk
λL − λ∗k

, m1 is odd number and m2 is even number.

Theorem 2 defines the collision laws of N -solitons in the n-th multi-component CQNLS system.

21

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



q̃j '
2√
n
η1sech(2τ1 + n−1 )e$1

q̃j '
2√
n
η1sech(2τ1 + n+

1 )e$1

q̃j '
2√
n
ηLsech(2τL + n−L )e$L

q̃j '
2√
n
ηLsech(2τL + n+

L)e$L

q̃j '
2√
n
ηN sech(2τN + n−N )e$N

q̃j '
2√
n
ηN sech(2τN + n+

N )e$N

interaction
range

soliton−1

soliton−1

soliton−L

soliton−L

soliton−N

soliton−N

tn

Figure 3: N -soliton collision in the n-th multicomponent CQNLS system

6. Conclusion325

In this paper, we mainly study the Riemann-Hilbert problems associated with matrix spectral problems to gain soliton

solutions of integrable hierarchies. We considered an arbitrary order matrix spectral problem which can reduce to the

coupled cubic-quintic nonlinear Schrödinger equations and generated the corresponding integrable hierarchies possessing

bi-Hamiltonian structures. For all multi-component CQNLS systems, under an appropriate transformation, we built their

Riemann-Hilbert problems and presented the jump matrix in the resulting Riemann-Hilbert problems. When the jump330

matrix is an identity matrix, we gained soliton solutions to the multi-component CQNLS systems. Finally, we discussed

the specific examples of one-soliton, two-soliton and N -soliton solutions, presented the explicit formulas, and analyzed their

asymptotic behavior.

The Riemann-Hilbert method is very powerful in constructing soliton solutions. The approach has been recently gener-

alized to solve initial-boundary value problems of integrable equations on the half-line and the finite interval [44, 45, 46, 47].335

We also remake that we can get the jump matrix at the non-zero boundary branch cut and use the Riemann-Hilbert problems

to gain the rogue wave. Therefore, another important questions for further study are how to formulate Riemann-Hilbert

problems for solving those generalized integrable counterparts. It is hoped that our results from the perspective of the

Riemann-Hilbert technique can be of great help to the study the exact solutions of to integrable equations.
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[37] F. H. Qi, B. Tian, X. Lü, R. Guo, Y. S. Xue, Darboux transformation and soliton solutions for the coupled cubic-quintic

nonlinear schrödinger equations in nonlinear optics, Communications in Nonlinear Science and Numerical Simulation420

17 (2012) 2372–2381. doi:10.1016/j.cnsns.2011.10.017.

[38] B. Fuchssteiner, A. S. Fokas, Symplectic structures, their bäcklund transformations and hereditary symmetries, Physica
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