期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:123
Prescribed curvature tensor in locally conformally flat manifolds
Review
Pina, Romildo1  Pieterzack, Mauricio1 
[1] Univ Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, Brazil
关键词: Conformal metric;    Riemannian curvature tensor;    Scalar curvature;    Ricci curvature;   
DOI  :  10.1016/j.geomphys.2017.09.014
来源: Elsevier
PDF
【 摘 要 】

A global existence theorem for the prescribed curvature tensor problem in locally con formally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric (g) over bar, conformal to Euclidean g, are determined such that (R) over bar = R, where (R) over bar is the Riemannian curvature tensor of the metric (g) over bar. The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric (g) over bar is complete on R-n. Similar problems are considered for locally conformally flat manifolds. (C) 2017 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2017_09_014.pdf 488KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次