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PRESCRIBED CURVATURE TENSOR IN LOCALLY

CONFORMALLY FLAT MANIFOLDS

ROMILDO PINA AND MAURICIO PIETERZACK

Abstract. A global existence theorem for the prescribed curvature tensor
problem in locally conformally flat manifolds is proved for a special class of
tensors R. Necessary and sufficient conditions for the existence of a metric ḡ,
conformal to Euclidean g, are determined such that R̄ = R, where R̄ is the
Riemannian curvature tensor of the metric ḡ. The solution to this problem
is given explicitly for special cases of the tensor R, including the case where
the metric ḡ is complete on Rn. Similar problems are considered for locally
conformally flat manifolds.

1. Introduction

Over the last decades several authors have considered the following problem:

(P)
Given a smooth function K̄ : M → R on a manifold (M, g) is
there a metric ḡ conformal to g whose scalar curvature is K̄?

This problem has been studied by various authors. Particularly, when K̄ is a
constant it is known as the Yamabe Problem. If M = Rn with n ≥ 3 and g is the
Euclidean metric, various results can be found in [1], [2], [3] and in their references.

An interesting problem related to problem (P), that is currently under extensive
investigation is the prescribed Ricci curvature equation. It can be formulated as
follows:

(P1)
Given a symmetric (0, 2)-tensor T , defined on a manifoldMn, n ≥
3, does there exist a Riemannian metric g such that Ric g = T ?

When T is nonsingular, that is, its determinant does not vanish, a local solution
of the Ricci equation always exists, as shown by DeTurck in [4]. When T is singular,
the Ricci equation still admits local solutions, provided that T has constant rank
and satisfies certain conditions [5]. Rotationally symmetric nonsingular tensors
were considered in [6]. Related results can be found in [5], [7], [8], [9], [10], [14],
[11], [12], and the references therein. Recent developments on problem (P1) can be
found in [15], [16], [17], and [18].

Another problem related to problem (P1) is the Prescribed Curvature Tensor
problem, which can be formulated as follows:

(P2)
Given a (0, 4)-tensor R, defined on a manifold Mn, n ≥ 3, does
there exist a Riemannian metric g such that Rg = R, where Rg is
the Riemannian curvature tensor of the metric g?
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We observe that solving problem (P2) is equivalent to solving a nonlinear system
of partial differential equations of second order.

There are very few studies in the literature concerning this problem. Consid-
ering n = 3 and R a (0, 4)-tensor nondegenerate as a quadratic form on Λ2T ∗M ,
Robert Bryant proved in the early 1980s that when R is real-analytic, there always
exist local solutions to the equation Rg = R. Then, he proved that the combined
overdetermined system of six second-order equations and four first-order equations
for g is involutive; therefore, an application of the Cartan–Kähler Theorem proves
local solvability. He never published his proof; however, DeTurck and Yang later
studied the overdetermined system and published a proof of its local solvability in
the smooth category [19].

To the best of our knowledge, the existence of global solutions to problem (P2)
has not yet been considered. Thus, this study is intended as a contribution in this
research direction.

In an attempt to solve (P2), we consider the Prescribed Curvature Tensor problem
with conformal change of metric. That is, the following problem:

(P3)
Let (Mn, g), n ≥ 3, be a Riemannian manifold. Given a (0, 4)-
tensor R, defined on M , does there exist a Riemannian metric ḡ
conformal to g such that Rḡ = R?

The curvature tensor of the metric g on M can be decomposed as follows:

Rg =Wg +Ag ⊙ g,

where Rg is the Riemannian curvature tensor, ⊙ is the Kulkarni–Nomizu product,
and Ag and Wg are the Schouten and Weyl tensors of g, respectively [13].

If g is locally conformally flat, then Wg = 0, as the Weyl tensor is conformally
invariant. Therefore, the Riemann curvature tensor is determined by the Schouten
tensor, and the decomposition is

(1.1) Rg = Ag ⊙ g.

In this paper, we consider a (0, 4)-tensor R = T ⊙ g on the Euclidean space

(Rn, g), n ≥ 3, where T is a diagonal (0, 2)-tensor given by T =
∑

i

fi(x)dx
2
i ,

and fi(x) are smooth functions. Our interest is to study the Prescribed Curvature
Tensor problem in this particular context.

In Theorem 3.2 we provide necessary and sufficient conditions on the tensor R
for the existence of a metric ḡ conformal to g such that Rḡ = R. We extend this
result to locally conformally flat manifolds in Theorem 3.8. We consider particu-
lar cases for the tensor R when the solutions for the Prescribed Curvature Tensor
problem are given explicitly. In Theorem 3.3 we consider the case R = f(g ⊙ g),
where f is a smooth function and g is the Euclidean metric. Unfortunately, in this
case the metric ḡ is not complete. In Theorem 3.5, we obtain a non-existence re-
sult. In Theorem 3.6, we consider tensors T depending only on one fixed variable.
From this, we exhibit examples of complete metrics on Rn with prescribed Rie-
mannian curvature tensor. In Theorem 3.8, these results are generalized to locally
conformally flat manifolds.
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2. Preliminaires

Our purpose is to study the Prescribed Curvature Tensor problem in locally
conformally flat manifolds. In this section, we set forth the notation and review the
necessary background to state the results about this problem in the next section.

Let (Mn, g) be a flat manifold and R = T ⊙ g be a (0, 4)-tensor defined on M ,

where T is a (0, 2)-tensor. We wish to find ḡ =
1

ϕ2
g such that R̄ = R, where R̄ is

the Riemannian curvature tensor of the metric ḡ. That is, we study the following
problem:

(2.1)





ḡ =
1

ϕ2
g

R̄ = R
.

Using the decomposition of the Riemannian curvature tensor R̄ in (1.1), we

obtain that R̄ = R is equivalent to Aḡ ⊙ ḡ = T ⊙ g. As ḡ =
1

ϕ2
g, this equation is

equivalent to

Aḡ ⊙
(
g

ϕ2

)
= T ⊙ g.

Thus, R̄ = R is equivalent to

Aḡ ⊙ g =
(
ϕ2T

)
⊙ g.

As the Kulkarni–Nomizu product is injective (see Lemma 1.113 in [13]), problem
(2.1) is equivalent to

(2.2)





ḡ =
1

ϕ2
g

Aḡ = ϕ2T
.

Henceforth, we consider the Euclidean space (Rn, g), n ≥ 3, with coordinates
x = (x1, .., xn) and gij = δij . Given a (0, 4)-tensor R = T ⊙ g, where T is a

diagonal (0, 2)-tensor defined by T =
∑

i

fi(x)dx
2
i and fi(x) are smooth functions,

we seek necessary and sufficient conditions on the tensor R = T⊙g for the existence
of a metric ḡ =

1

ϕ2
g such that R̄ = R.

The Schouten tensor of ḡ is defined by

Aḡ =
1

n− 2

(
Ricḡ −

K̄

2(n− 1)
ḡ

)
,

where Ricḡ and K̄ are the Ricci tensor and the scalar curvature of ḡ, respectively.
As ḡ is conformal to the Euclidean metric g, the Ricci tensor of ḡ is given by

(2.3) Ricḡ =
1

ϕ2

{
(n− 2)ϕHessgϕ+

(
ϕ∆gϕ− (n− 1)|∇gϕ|2

)
g
}
,

and the scalar curvature of ḡ is given by

(2.4) K̄ = (n− 1)
(
2ϕ∆gϕ− n|∇gϕ|2

)
,

where ∆g and ∇g denote the Laplacian and the gradient in the Euclidean metric
g, respectively [13].
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Using (2.3) and (2.4), the Schouten tensor of ḡ can be expressed by

(2.5) Aḡ =
Hessgϕ

ϕ
− |∇gϕ|2

2ϕ2
g.

We will denote by ϕxk
and fi,xk

the derivatives of ϕ and fi with respect to xk,
respectively. Likewise, ϕxixj and fi,xixj are the second order derivatives of ϕ and
fi with respect to xixj , respectively. As g is the Euclidean metric in Rn, n ≥ 3,

studying problem (2.2) when T =
∑

i

fi(x)dx
2
i and fi(x) are smooth functions, is

equivalent to studying the following system of equations:

(2.6)





ϕxixi

ϕ
− |∇gϕ|2

2ϕ2
= ϕ2fi, ∀ i : 1, ..., n.

ϕxixj = 0, ∀ i 6= j.

From the second equation of (2.6), it follows that ϕ can be expressed as a sum
of functions, each of which depends only on one of the variables xi; thus we will
write

ϕ(x) =

n∑

i=1

ϕi(xi).

We will study system (2.6) with the additional condition that 3fi(x)+fj(x) 6= 0,
for all x ∈ Rn and all i 6= j.

3. Main results

We now state our main results. We start with a lemma that will be used in the
proofs to follow.

Lemma 3.1. Let ϕ(x1, ..., xn) be a solution of (2.6). Then

(3.1)
ϕxj

ϕ
= − fi,xj

3fi + fj
, ∀i 6= j

and

(3.2)
fk,xj

3fk + fj
=

fi,xj

3fi + fj
,

for distinct i, j, k.

Proof. From the first equation of (2.6) we obtain

ϕxixi = ϕ3fi +

∑

k

(ϕxk
)2

2ϕ
.
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Taking the derivative with respect to xj , j 6= i, and using again the first equation
of (2.6) we obtain

0 = 3ϕ2ϕxjfi + ϕ3fi,xj +
2ϕxjϕxjxj2ϕ− 2ϕxj |∇gϕ|2

4ϕ2

= 3ϕ2ϕxjfi + ϕ3fi,xj + ϕxj

ϕxjxj

ϕ
− ϕxj |∇gϕ|2

2ϕ2

= 3ϕ2ϕxjfi + ϕ3fi,xj + ϕxjϕ
2fj +

ϕxj |∇gϕ|2
2ϕ2

− ϕxj |∇gϕ|2
2ϕ2

= ϕ2(ϕxj (3fi + fj) + ϕfi,xj ).

As ϕ 6= 0, we obtain

(3.3) ϕxj (3fi + fj) + ϕfi,xj = 0.

Consequently, we have (3.1). Equation (3.2) follows immediately from (3.1). �

The relationship between the conformal factor ϕ and the functions fi that com-
pose the tensor T in this Lemma is fundamental for establishing the results of this
study.

The next theorem is our main result and provides necessary and sufficient con-
ditions for problem (2.1) to have a solution.

Theorem 3.2. Let (Rn, g), n ≥ 3, be the Euclidean space, with coordinates x1, ..., xn,

and metric gij = δij . We consider a (0, 4)-tensor R = T⊙g, where T =

n∑

i=1

fi(x)dx
2
i

and fi(x) are smooth functions such that 3fi(x) + fj(x) 6= 0 for all x ∈ Rn and all

i 6= j. Then, there exists a positive function ϕ such that the metric ḡ =
1

ϕ2
g satis-

fies R̄ = R if and only if the functions fi satisfy the following system of differential
equations:

(3.4)





fi,xj

3fi + fj
=

fk,xj

3fk + fj
, i 6= j, k 6= j,

(
fj,xi

3fj + fi

)

xk

=

(
fj,xk

3fj + fk

)

xi

, i 6= j, k 6= j,

(
fi,xj

3fi + fj

)

xi

=

(
fj,xi

3fj + fi

)

xj

, i 6= j,

1

2

(
fj,xi

3fj + fi

)2

−
(

fj,xi

3fj + fi

)

xi

− 1

2

∑

k 6=i

(
fj,xk

3fj + fk

)2

= hi, i 6= j,

fj,xi

3fj + fi

fi,xj

3fi + fj
=

(
fi,xj

3fi + fj

)

xi

, i 6= j,

where hi(x) = fi e
−2

∫ fi,xj
3fi+fj

dxj+ψj(x1,...,xj−1,xj+1,...,xn)
does not depend on j, the

function ψj(x1, ..., xj−1, xj+1, ..., xn) satisfies the following system of (n− 1) differ-
ential equations

(3.5) ψj,xi =

∫ (
fi,xj

3fi + fj

)

xi

dxj −
fj,xi

3fj + fi
, for i 6= j.
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The expression

∫
fi,xj

3fi + fj
dxj + ψj(x1, ..., xj−1, xj+1, ..., xn)

is independent of i and j as long as i 6= j, and up to a multiplicative constant, the
function ϕ is given by

ϕ(x) = exp

(
−
∫

fi,xj

3fi + fj
dxj + ψj(x1, ..., xj−1, xj+1, ..., xn)

)
.

Proof. We assume that ḡ = g/ϕ2 is a solution of (2.2). Then, by Lemma 3.1, the
first equation of (3.4) is satisfied, and we obtain, for a fixed j = 1, . . . , n, that

ϕ(x) = exp

(
−
∫

fi,xj

3fi + fj
dxj + ψj(x1, ..., xj−1, xj+1, ..., xn)

)
, i 6= j,

where the function ψj(x1, ..., xj−1, xj+1, ..., xn) does not depend on xj .
We will show that the expression of ϕ, and consequently of hi, is independent of

the variable of integration and the function ψj is well-defined.
Taking the derivative of ϕ with respect to xi, i 6= j, we obtain

ψj,xi =

∫ (
fi,xj

3fi + fj

)

xi

dxj +
ϕxi

ϕ
=

∫ (
fi,xj

3fi + fj

)

xi

dxj −
fj,xi

3fj + fi
.

Taking now the derivative of this expression with respect to xk, k 6= j, we obtain

ψj,xixk
=

∫ (
fi,xj

3fi + fj

)

xixk

dxj −
(

fj,xi

3fj + fi

)

xk

.

Similarly, we obtain that ψj,xkxi =

∫ (
fi,xj

3fi + fj

)

xkxi

dxj −
(

fj,xk

3fj + fk

)

xi

.

Thus, ψj,xixk
= ψj,xkxi if and only if

(
fj,xi

3fj + fi

)

xk

=

(
fj,xk

3fj + fk

)

xi

.

Therefore, the second equation in (3.4) is satisfied.
Taking the derivative of ψj,xi with respect to xj , i 6= j, we obtain

ψj,xixj =

(
fi,xj

3fi + fj

)

xi

−
(

fj,xi

3fj + fi

)

xj

.

As ψj,xixj = ψj,xjxi = 0, the third equation in (3.4) is satisfied.
Using Equation (3.1), we have that, for a fixed j = 1, . . . , n,

lnϕ(x) = −
∫

fi,xj

3fi + fj
dxj + ψj(x1, ..., xj−1, xj+1, ..., xn), i 6= j,

where the function ψj(x1, ..., xj−1, xj+1, ..., xn) does not depend on xj .
Integrating Equation (3.1) with respect to another variable xs, for a fixed s =

1, . . . , n, s 6= j, we obtain

ln ϕ̃(x) = −
∫

fi,xs

3fi + fs
dxs + ψs(x1, ..., xs−1, xs+1, ..., xn), i 6= s,

where the function ψs(x1, ..., xs−1, xs+1, ..., xn) does not depend on xs.
Setting A = lnϕ(x) − ln ϕ̃(x), we will show that A is constant.
Taking the derivative with respect to xs, we obtain
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Axs = −
∫ (

fi,xj

3fi + fj

)

xs

dxj + ψj,xs +
fi,xs

3fi + fs
.

Using Equation (3.2) and that ψj,xs =

∫ (
fi,xj

3fi + fj

)

xs

dxj −
fi,xs

3fi + fs
, we con-

clude that Axs = 0. Similarly, taking the derivative of A with respect to xj , and
using Equation (3.2) and the expression of ψs,xj , we conclude that Axj = 0.

For k 6= s and k 6= j, using the expressions of the derivatives of ψj and ψs, and
Equation (3.2) in Lemma 3.1, we obtain

Axk
= −

∫ (
fi,xj

3fi + fj

)

xk

dxj + ψj,xk
+

∫ (
fi,xs

3fi + fs

)

xk

dxs − ψs,xk

= −
∫ (

fi,xj

3fi + fj

)

xk

dxj +

∫ (
fi,xj

3fi + fj

)

xk

dxj +
ϕxk

ϕ

+

∫ (
fi,xs

3fi + fs

)

xk

dxs −
∫ (

fi,xs

3fi + fs

)

xk

dxs −
ϕ̃xk

ϕ̃

= − fi,xk

3fi + fk
+

fi,xk

3fi + fk
= 0.

Thus, ϕ is well-defined. As ϕ is a solution of (2.2), it satisfies (2.6). Lemma 3.1

implies that for i 6= j, we have ϕxi = −ϕ fj,xi

3fj + fi
. Taking the derivative with

respect to xi, we obtain

ϕxixi

ϕ
= −ϕxi

ϕ

fj,xi

3fj + fi
−
(

fj,xi

3fj + fi

)

xi

=

(
fj,xi

3fj + fi

)2

−
(

fj,xi

3fj + fi

)

xi

.

Thus, using that |∇gϕ|2 =

n∑

k=1

(ϕxk
)2 =

∑

k 6=i
ϕ2

(
fj,xk

3fj + fk

)2

+ (ϕxi)
2
and the ex-

pression above, the first equation in (2.6) is equivalent to
(

fj,xi

3fj + fi

)2

−
(

fj,xi

3fj + fi

)

xi

− 1

2

∑

k 6=i

(
fj,xk

3fj + fk

)2

− 1

2

(
fj,xi

3fj + fi

)2

= ϕ2fi.

Simplifying this expression, we obtain

1

2

(
fj,xi

3fj + fi

)2

−
(

fj,xi

3fj + fi

)

xi

−
∑

k 6=i

(
fj,xk

3fj + fk

)2

=

fi e
−2

∫
fi,xj

3fi + fj
dxj + ψj(x1, ..., xj−1, xj+1, ..., xn)

.

This proves the fourth equality of (3.4).
Lemma 3.1 implies that for i 6= j, we have

ϕxjxi = −ϕxi

fi,xj

3fi + fj
− ϕ

(
fi,xj

3fi + fj

)

xi

= ϕ

{
fj,xi

3fj + fi

fi,xj

3fi + fj
−
(

fi,xj

3fi + fj

)

xi

}
= 0.

As ϕ 6= 0, the other expression equals zero, which proves the fifth and last equality
of (3.4). The converse is a straightforward computation. �
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To provide explicit examples of metrics satisfying R̄ = R, we shall consider
particular cases for T .

Theorem 3.3. Let (Rn, g), n ≥ 3, be the Euclidean space, with coordinates x1, ..., xn,

and metric gij = δij. Then, there exists a metric ḡ =
1

ϕ2
g such that R̄ = R =

f(g ⊙ g), where f is a nonvanishing smooth function, if and only if

(3.6) f(x) =
−λ

2(
n∑

i=1

(ax2i + bixi) + c)4
,

where a, bi, c are constants, λ =
n∑

i=1

b2i 4ac, and

(3.7) ϕ(x) =

n∑

i=1

(ax2i + bixi) + c.

Any such metric ḡ is unique up to homothety. Moreover, we have:

(1) If λ < 0, then ḡ is globally defined on Rn.
(2) If λ ≥ 0, then the metric ḡ is defined:

(a) on all Rn if λ = 0 and a = 0;
(b) in Rn minus a point if λ = 0 and a 6= 0;
(c) in Rn \ L if λ > 0 and a = 0 , where L is a hyperplane;
(d) in Rn \S if λ > 0 and a 6= 0, where S is an (n−1)-dimensional sphere.

Proof. As fi = fj , for all i, j, Lemma 3.1 implies that

(3.8)
ϕxj

ϕ
= −fxj

4 f
for all j.

Therefore, there exists a constant λ such that ϕ4f = −λ
2

and

f = − λ

2ϕ4
.

(2.6) implies that

ϕxixi = fϕ3 +
|∇gϕ|2
2ϕ

, for all i = 1, ..., n.

Then
ϕxixi = ϕxjxj

for all i, j. Thus, for every i = 1, ..., n, ϕi(xi) = ax2i + bixi + ci and

ϕ(x) =
n∑

i=1

ϕi(xi) =
n∑

i=1

(ax2i + bixi) + c.

Using the above relation between ϕ and f , we obtain that

f(x) =
−λ

2(

n∑

i=1

(ax2i + bixi) + c)4
.

Calculating the expressions in the first equality in (2.6) we obtain that
λ =

∑
i b

2
i − 4ac. Analyzing the expression of ϕ, we arrive at the conclusions
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concerning the domain of ϕ. Particularly, if λ < 0, the function ϕ does not vanish,
and the metric ḡ is globally defined on Rn. �
Remark 3.4. In this theorem, we directly used system (2.6). However, Equations
(3.4) of Theorem 3.2 are satisfied with fi = f ∀i = 1, ..., n and ϕ given by (3.7)
with ψ(x1, ..., xj−1, xj+1, ..., xn) constant. This shows that there exist examples of
tensors in Rn that are solutions of the equations of Theorem 3.2.

We now present a non-existence result for conformal metrics for a special tensor
R.

Theorem 3.5. Let (Rn, g), n ≥ 3, be the Euclidean space, with coordinates x1, ..., xn,
and metric gij = δij. We consider the (0, 4)-tensor R = T ⊙ g, where T =
n∑

i=1

fi(xi)dx
2
i and fi(xi) are smooth functions that depend on only the variable xi

such that 3fi(xi) + fj(xj) 6= 0 for all (xi, xj) ∈ R × R, i 6= j. Then, there is no

metric ḡ =
1

ϕ2
g such that R̄ = R.

Proof. As fi do not depend on the variables xj , j 6= i, (3.1) implies that

(3.9)
ϕxj

ϕ
= − fi,xj

3fi + fj
= 0 for all j 6= i,

and

(3.10)
ϕxi

ϕ
= − fj,xi

3fj + fi
= 0 for all i 6= j.

Thus, ϕxk
= 0 for all k; therefore ϕ is constant. Using (2.6) we conclude that

fi = 0, for all i = 1, . . . , n, which contradicts 3fi+fj 6= 0, for (xi, xj) ∈ R×R, i 6= j.
Hence, there does not exist a metric ḡ such that R̄ = R. �

In the particular case in which the components of the tensor T depend only on
one variable, we have the following result.

Theorem 3.6. Let (Rn, g), n ≥ 3, be the Euclidean space, with coordinates x1, ..., xn,
and metric gij = δij . We consider a (0, 4)-tensor R = T ⊙ g, where T is a diago-

nal (0, 2)-tensor given by T =

n∑

i=1

fi(xk)dx
2
i and fi(xk) are smooth functions that

depend only on xk, for some fixed k, 1 ≤ k ≤ n, such that 3fi(xk) + fj(xk) 6= 0

for all xk ∈ R and i 6= j. There exists a metric ḡ =
1

ϕ2
g such that R̄ = R if and

only if all functions fi for i 6= k are equal to a function f , and f and fk satisfy the
system

(3.11)





1

2

(
fxk

3f + fk

)2

−
(

fxk

3f + fk

)

xk

= C2fk v

−
(

fxk

3f + fk

)2

= 2C2f v

where v = v(xk) = e
−2

∫ fxk
3f+fk

dxk . Moreover, if fk and f satisfy these conditions,
then ϕ depends only on xk and is given by

(3.12) ϕ(xk) = C exp(−
∫

fxk

3f + fk
dxk),
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where C is a positive constant.

Proof. As fi = fi(xk) for some fixed k, Lemma 3.1 implies that ϕxj = 0 for every

j 6= k; therefore ϕ = ϕ(xk). Furthermore, from (2.6) we have that fi = −|∇gϕ|2
2ϕ4

for all i 6= k; hence, fi = fj, if i 6= k and j 6= k. Hence, the expression of ϕ in (3.12)
and the system in (3.11) are consequences of Theorem 3.2. �
Corollary 3.7. Let (Rn, g), n ≥ 3, be the Euclidean space, with coordinates
x1, ..., xn, and metric gij = δij . We consider the (0, 2)-tensor

T = fk(xk)dx
2
k + f(xk)

∑

i6=k
dx2i ,

where fk(xk) =
h2 − 2hxk

2C2
e2

∫
h(xk)dxk , f(xk) = − h2

2c2
e2

∫
h(xk)dxk , and h = h(xk)

is a smooth function that depends only on xk, for some fixed k, 1 ≤ k ≤ n. Then,
there exists a conformal metric ḡ = g/ϕ2 such that R̄ = R and

(3.13) ϕ(xk) = C exp(−
∫
h(xk) dxk),

where C is a positive constant.

If, in addition, 0 ≤
∣∣∣∣
∫
h(xk) dxk

∣∣∣∣ ≤ L, for a finite constant L, then the metric

ḡ is complete on Rn.

Proof. It follows immediately from Theorem 3.6, considering h(xk) =
fxk

3f + fk
. The

equalities in (3.11) are trivially satisfied and the expressions of f and fk are exactly
the components of the tensor T . �

We can extend Theorem 3.2 to locally conformally flat manifolds. Let (Mn, g)
be a locally conformally flat Riemannian manifold. We may consider problem
(2.1) for a neighborhood V ⊂ M with local coordinates (x1, x2, ..., xn) such that
gij = δij/F

2, where F is a non-vanishing smooth function on V .

Theorem 3.8. Let (Mn, g), n ≥ 3, be a locally conformally flat Riemannian man-
ifold. Let V be an open subset of M with coordinates x = (x1, x2, ..., xn) and
gij = δij/F

2. We consider a (0, 4)-tensor R = T ⊙ g, where T is a diagonal

(0, 2)-tensor given by T =

n∑

i=1

fi(x)dx
2
i and fi are smooth functions such that

3fi(x) + fj(x) 6= 0 for all x ∈ V and all i 6= j. Then, there exists a metric

ḡ =
1

φ2
g such that R̄ = R if and only if the functions fi, ϕ, and ψ are given as in

Theorem 3.2 and φ =
ϕ

F
.

Proof. We consider ϕ = φF and apply Theorem 3.2. �
Remark 3.9. In a similar fashion, we can extend Theorem 3.6 for locally conformally
flat manifolds.

As an application of Theorem 3.8, we show that given a (0, 4)-tensor R in Rn+,
there exists a metric ḡ, conformal to the metric of the hyperbolic space, whose
Riemannian curvature tensor is R.
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Example 3.10. Let Hn = (Rn+, g) be the hyperbolic space, where g =
1

x2n
g0,

(g0)ij = δij is the Euclidean metric, and Rn+ = {x = (x1, x2, ..., xn) ∈ Rn/xn > 0}.
Given the (0, 4)-tensor R = T ⊙ g, where T is the diagonal (0,2)-tensor

T = − (2x2n − 1)2

2x4n
e2x

2
n

∑

i6=n
dx2i +

4x4n − 8x2n − 1

2x4n
e2x

2
ndx2n

defined in Rn+, Theorem 3.8 implies the existence of a metric ḡ =
1

φ2
g, where

φ(x) =
ϕ(x)

F (x)
= e−x

2
n such that R̄ = R.

Moreover, as φ(x) is bounded, (Rn+, ḡ) is a complete Riemannian manifold, con-
formal to the hyperbolic space.

The scalar curvature of (Rn+, ḡ) is not constant and given by

K̄ = (n− 1)e−2x2
n(4(2− n)x4n + 4(n− 3)x2n − n),

and the Ricci tensor of the metric ḡ is

Ricḡ =
4(2− n)x4n + 2(2n− 5)x2n + 1− n

x2n

∑

i6=n
dx2i + (n− 1)

4x4n − 4x2n − 1

x2n
dx2n.

Likewise, the sectional curvature of (Rn+, ḡ) is non-constant and given by

K

(
∂

∂xi
,
∂

∂xj

)
= −(1− 2x2n)

2e−2x2
n ≤ 0,

if i, j 6= n, and

K

(
∂

∂xi
,
∂

∂xn

)
= 2x2n(2x

2
n − 3)e−2x2

n .

Example 3.11. Corollary 3.7 also provides examples of complete, conformally flat
manifolds with prescribed Riemannian curvature tensor and non-constant curva-
tures.

(1) In the Euclidean space (Rn, g), n ≥ 3, we consider the (0, 4)-tensor R =
T ⊙ g, where T is a diagonal (0,2)-tensor given by

T =

(
sinh2 xk − 2 coshxk

2C2
e2 cosh xk

)
dx2k −

sinh2 xk
2C2

e2 cosh xk

∑

i6=k
dx2i ,

where C is a positive constant.

Corollary 3.7 implies the existence of a metric ḡ =
1

ϕ2
g, conformal to the

Euclidean metric, such that R̄ = R = T ⊙ g is the Riemannian curvature
tensor of the metric ḡ. In particular, we have that

ϕ(xk) = Ce− cosh xk ,

where C is a positive constant. The manifold (Rn, ḡ) is complete and has
negative scalar curvature given by

K̄ = −(n− 1)Ce− cosh xk(2 cosh2 xk + (n− 2) sinh2 xk)
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and negative Ricci curvature whose Ricci tensor is negative definite and
given by

Ricḡ = −(n− 1) coshxkdx
2
k − (coshxk + (n− 2) sinh2 xk)

∑

i6=k
dx2i .

Moreover, (Rn, ḡ) has non-positive sectional curvature given by

K

(
∂

∂xi
,
∂

∂xj

)
= −C2 sinh2 xke

−2 cosh xk ,

if i, j 6= k, and

K

(
∂

∂xi
,
∂

∂xk

)
= −C2 coshxke

−2 cosh xk .

(2) In the Euclidean space (Rn, g), n ≥ 3, we consider the (0, 4)-tensor R =
T ⊙ g, where T is a diagonal (0, 2)-tensor given by

T =
(4x2k − 2)

C2
dx2k −

2x2k
C2

∑

i6=k
dx2i ,

where C is a positive constant. Corollary 3.7 implies the existence of a

metric ḡ =
1

ϕ2
g, conformal to the Euclidean metric, such that R̄ = R =

T ⊙ g is the Riemannian curvature tensor of the metric ḡ. In particular, we
have

ϕ(xk) =
C

1 + x2k
,

where C is a positive constant. The manifold (Rn, ḡ) is complete, it has
negative scalar curvature given by

K̄ = −4(n− 1)C2

(1 + x2k)
2
(1 + (n− 3)x2k),

and the Ricci tensor of ḡ is given by

Ricḡ =
2(n− 1)(x2k − 1)

(1 + x2k)
2

dx2k +
(10− 4n)x2k − 2

(1 + x2k)
2

∑

i6=k
dx2i .

Moreover, (Rn, ḡ) has sectional curvature given by

K

(
∂

∂xi
,
∂

∂xj

)
= − 4C2x2k

(1 + x2k)
4
,

if i, j 6= k, and

K

(
∂

∂xi
,
∂

∂xk

)
= −2C2(1− x2k)

(1 + x2k)
4
.

(3) In the Euclidean space (Rn, g), we consider the (0, 4)-tensor R = T ⊙ g,
where T is a diagonal (0, 2)-tensor given by

T =
2(x2k − 1)

C2
e2x

2
kdx2k −

2x2k
C2

e2x
2
k

∑

i6=k
dx2i ,

where C is a positive constant. Corollary 3.7 implies the existence of a

metric ḡ =
1

ϕ2
g, conformal to the Euclidean metric, such that R̄ = R =
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T ⊙ g is the Riemannian curvature tensor of the metric ḡ. In particular, we
have that

ϕ(xk) = Ce−x
2
k ,

where C is a positive constant. The manifold (Rn, ḡ) is complete and has
negative scalar curvature given by

K̄ = −4(n− 1)C2e−2x2
k(1 + (n− 2)x2k)

and negative Ricci curvature, whose Ricci tensor is given by

Ricḡ = −2(n− 1)dx2k − 2(1− 2(n− 2)x2k)
∑

i6=k
dx2i .

The sectional curvature of (Rn, ḡ) is non-positive and given by the expres-
sions

K

(
∂

∂xi
,
∂

∂xj

)
= −4x2kC

2e−2x2
k ,

if i, j 6= k, and

K

(
∂

∂xi
,
∂

∂xk

)
= −2C2e−2x2

k .

We observe that although there are points where the tensor R is zero, there
still exists a complete metric such that the curvature tensor of this metric
is the prescribed tensor R.

Acknowledgment: We would like to thank the reviewer for their detailed com-
ments and suggestions for the manuscript.
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