期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:110
Cut locus of a left invariant Riemannian metric on SO3 in the axisymmetric case
Article
Podobryaev, A. V.1  Sachkov, Yu. L.2 
[1] Program Syst Inst RAS, Pereslavl Zalesskii, Yaroslavl Regio, Russia
[2] Univ Hradec Kralove, Fac Sci, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
关键词: Riemannian geometry;    SO3;    Sub-Riemannian geometry;    Geodesics;    Cut time;    Cut locus;   
DOI  :  10.1016/j.geomphys.2016.09.005
来源: Elsevier
PDF
【 摘 要 】

We consider a left invariant Riemannian metric on SO3 with two equal eigenvalues. We find the cut locus and the equation for the cut time. We find the diameter of such metric and describe the set of all most distant points from the identity. Also we prove that the cut locus and the cut time converge to the cut locus and the cut time in the sub-Riemannian problem on SO3 as one of the metric eigenvalues tends to infinity. (C) 2016 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2016_09_005.pdf 692KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次