期刊论文详细信息
JOURNAL OF GEOMETRY AND PHYSICS 卷:154
An equivariant orbifold index for proper actions
Article
Hochs, Peter1  Wang, Hang2 
[1] Univ Adelaide, Adelaide, SA, Australia
[2] East China Normal Univ, Shanghai, Peoples R China
关键词: Equivariant index;    Proper group action;    Transversally elliptic operator;    Orbifold;    KK-theory;   
DOI  :  10.1016/j.geomphys.2020.103710
来源: Elsevier
PDF
【 摘 要 】

For a proper, cocompact action by a locally compact group of the form H x G, with H compact, we define an H x G-equivariant index of H-transversally elliptic operators, which takes values in KK*(CH, C*G). This simultaneously generalises the Baum-Connes analytic assembly map, Atiyah's index of transversally elliptic operators, and Kawasaki's orbifold index. This index also generalises the assembly map to elliptic operators on orbifolds. In the special case where the manifold in question is a real semisimple Lie group, G is a cocompact lattice and H is a maximal compact subgroup, we realise the Dirac induction map from the Connes-Kasparov conjecture as a Kasparov product and obtain an index theorem for Spin-Dirac operators on compact locally symmetric spaces. (C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_geomphys_2020_103710.pdf 390KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次