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a b s t r a c t

For a proper, cocompact action by a locally compact group of the form H × G, with
H compact, we define an H × G-equivariant index of H-transversally elliptic operators,
which takes values in KK∗(C∗H, C∗G). This simultaneously generalises the Baum–Connes
analytic assembly map, Atiyah’s index of transversally elliptic operators, and Kawasaki’s
orbifold index. This index also generalises the assembly map to elliptic operators on
orbifolds. In the special case where the manifold in question is a real semisimple Lie
group, G is a cocompact lattice and H is a maximal compact subgroup, we realise the
Dirac induction map from the Connes–Kasparov conjecture as a Kasparov product and
obtain an index theorem for Spin-Dirac operators on compact locally symmetric spaces.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Two natural ways in which orbifolds occur are as quotients of locally free actions by compact groups, and of proper
actions by discrete groups. In fact, every orbifold can be realised as the quotient of a locally free action by compact group
H on a manifold M̃; see e.g. [11,29]. A well-known approach to index theory on a compact, presented orbifold M := M̃/H
is to consider an elliptic operator D on M as a transversally elliptic operator D̃ on M̃ , and define the index of D as the
H-invariant part of the H-equivariant index of D̃ in the sense of Atiyah [2].

Intuitively, if an orbifold M is realised as the quotient of a proper action by a discrete group Γ on a manifold X , then
the orbifold index of an operator on M is the Γ -invariant part of its lift to an operator on X . This can be made precise
in terms of the Baum–Connes assembly map, with values in the K -theory of the maximal group C∗-algebra of Γ , from
which the invariant part can be obtained by an application of the map given by summing over Γ .

Our purpose in this paper is to unify and extend these two approaches to orbifold index theory. Along the way, we
construct a generalisation of the Baum–Connes assembly map from manifolds to orbifolds. We also realise the Dirac
induction map from the Connes–Kasparov conjecture as a Kasparov product.

For a compact group H and a locally compact group G, and a proper, isometric, cocompact action by H×G on a manifold
M̃ , we define an index of H × G-equivariant, H-transversally elliptic operators on M̃ , with values in KK∗(C∗H, C∗G). This
builds on parts of Kasparov KK -theoretic treatment of transversally elliptic operators [18]. If H is trivial, then this index
is the Baum–Connes assembly map. If G is trivial, it is Atiyah’s index of transversally elliptic operators, whose H-invariant
part is the realisation of the orbifold index on M = M̃/H mentioned above, if H acts locally freely. In general, the pairing
of this index with the class of the trivial representation of H in K∗(C∗H) generalises the Baum–Connes assembly map to
G-equivariant elliptic operators on the possibly singular space M .
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Another K -theoretic approach to index theory on orbifolds was developed by Farsi [11]. An index of families of
transversally elliptic operators was constructed and applied in a KK -theoretic setting by Baldare [5,6]. Baldare and
Benameur [7] developed an index of leaf-wise transversally elliptic operators for actions by compact groups on foliated
compact manifolds.

The index in KK∗(C∗H, C∗G) is furthest removed form existing index theory if the action by H on M̃ is not free, and
M is not a smooth manifold. However, even if H acts freely, this index refines existing (orbifold) indices, as the double
quotient M̃/(H×G) may be singular. We investigate the index in this special case, and find relations with the Baum–Connes
assembly map.

A natural setting in which this applies is the case of compact locally symmetric spaces Γ \G/K , where G is a real
semisimple group, Γ < G is a cocompact lattice, and K < G is maximal compact. For a class of examples including
these spaces, we show that the index of an elliptic operator on Γ \G/K can be obtained both as the K -invariant part
of a transversally elliptic operator on Γ \G and as the Γ -invariant part (in a K -theoretic sense) of the index of an
elliptic operator on G/K . These approaches are unified in the sense that both indices are obtained from the index of
a K × Γ -equivariant, transversally elliptic operator on G, which generalises and refines the two indices on Γ \G and
G/K . In this sense, the index we consider here encodes the most refined index-theoretic information on Γ \G/K , and
simultaneously incorporates the Γ - and K -symmetries. We obtain explicit expressions for the values of natural traces on
the Γ × K -equivariant index of the lift of the Spin-Dirac operator from G/K to G in this context.

2. Preliminaries and results

2.1. Preliminaries

Let M̃ be a Riemannian manifold. Let G and H be Lie groups, acting isometrically on M̃ . Suppose that the actions by
the two groups commute. Then G has the induced action on the quotient M := M̃/H .

Let E → M be a Hermitian, Z2-graded, G-equivariant, continuous vector bundle. Let q: M̃ → M be the quotient map.
Suppose that Ẽ := q∗E → M̃ has the structure of a smooth vector bundle.

Definition 2.1. A G-equivariant differential operator on E is an operator D on Γ∞(Ẽ)H that is the restriction of a G × H-
equivariant differential operator D̃ on Γ∞(Ẽ). Such a differential operator D is elliptic if the operator D̃ is (or can be chosen
to be) transversally elliptic with respect to the action by H .

If H acts properly and freely on M̃ , then this definition reduces to the usual definition of elliptic differential operators.

Remark 2.2. If D is a first order differential operator, and H acts properly and freely, then Definition 2.1 becomes very
explicit. In this case D has a unique pullback along any smooth, G-equivariant map f :N → M to a linear operator f ∗D on
Γ∞(f ∗E) satisfying

• for all s ∈ Γ∞(E),

(f ∗D)(f ∗s) = f ∗(Ds);

• for all σ ∈ Γ∞(f ∗E) and ϕ ∈ C∞(N),

(f ∗D)(ϕσ ) = σD(Tf ◦ grad(ϕ))σ + ϕ(f ∗D)σ .

Here σD is the principal symbol of D. Existence and uniqueness of f ∗D can be proved in the same way as one proves that
pullbacks of connections are well-defined. In this case, we may take D̃ = q∗D in Definition 2.1.

Remark 2.3. The class of spaces M = M̃/H that we consider includes the presented orbifolds: quotients of smooth
manifolds by locally free actions by compact Lie groups. Presented orbifolds, in turn, generalise effective orbifolds: orbifolds
for which all local stabilisers act effectively. Indeed, for an effective orbifold M , one fixes an orbifold Riemannian metric,
and the corresponding orthonormal frame bundle M̃ = O(TM) → M . Then M̃ is a smooth manifold, and H = O(dim(M))
acts locally freely on it, with quotient M . See for example Theorem 1.23 in [1]. This construction is generalised to certain
non-effective orbifolds in [14].

In the setting of an effective orbifold M , Definition 2.1 generalises the usual notion of first-order elliptic operators. The
pullback construction in Remark 2.2 also applies to first order differential operators on orbifolds, so a first order elliptic
differential operator D on M pulls back to an O(dim(M))-equivariant, transversally elliptic operator on M̃ = O(TM), so
Definition 2.1 applies to D.

We fix a first order, G-equivariant, self-adjoint, elliptic differential operator D on E, that is odd with respect to the
grading, and a lift D̃ of D to Ẽ as in Definition 2.1. Let D̃+ and D̃− be the restrictions of D̃ to sections of the even and odd
parts of Ẽ, respectively.

If M , G and H are compact, then a natural definition of the G-equivariant index of D is

indexG(D) = [ker(D̃+)H ] − [ker(D̃−)H ]. (2.1)
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This is an element of the representation ring of G. An index formula for such an index was given by Vergne [29]. It is
our goal in this note to generalise this index to noncompact M and G, assuming the action to be proper, and M/G to be
compact.

2.2. The index

From now on, suppose that H is compact, that G acts properly on M̃ (and hence on M), and that M/G is compact. Then
there is a cutoff function c ∈ Cc(M), such that for all m ∈ M ,∫

G
c(gm)2 dg = 1

for a left Haar measure dg on G. The pullback c̃ := q∗c ∈ Cc(M̃)H then has the analogous property.
Whenever we use group C∗-algebras or crossed-product C∗-algebras, these may be interpreted as either the reduced

or maximal versions. We will need maximal versions at some points (for example, in Theorem 2.9), and then it will be
made explicit that maximal completions are used.

Consider the idempotents p ∈ C0(M) ⋊ G and p̃ ∈ C0(M̃) ⋊ G defined by

p(m, g) = c(m)c(g−1m);

p̃(m̃, g) = c̃(m̃)c̃(g−1m̃),
(2.2)

for m ∈ M , m̃ ∈ M̃ , and g ∈ G. They define classes

[p] ∈ KK (C, C0(M) ⋊ G);

[p̃] ∈ KKH (C, C0(M̃) ⋊ G).

Let

πM̃,H : C0(M̃) ⋊ H → B(L2(Ẽ))

be the ∗-representation defined by pointwise multiplication by functions in C0(M), and the unitary representation of H
in L2(Ẽ). Kasparov showed in Proposition 6.4 in [18] that the transversally elliptic operator D̃ defines a class

[D̃] :=
[
L2(Ẽ),

D̃√
D̃2 + 1

, πM̃,H

]
∈ KKG

0 (C0(M̃) ⋊ H,C). (2.3)

Let

jG:KKG
∗
(C0(M̃) ⋊ H,C) → KK∗(C0(M̃) ⋊ (G × H), C∗G);

jH :KKH
∗
(C, C0(M̃) ⋊ G) → KK∗(C∗H, C0(M̃) ⋊ (G × H)).

be descent maps, see 3.11 in [17]. Here we used the fact that the actions by G and H commute.
Consider the classes

jH [p̃] ∈ KK∗(C∗H, C0(M̃) ⋊ (G × H));

jG[D̃] ∈ KK∗(C0(M̃) ⋊ (G × H), C∗G).

Let [1H ] ∈ KK (C, C∗H) = R(H) be the class of the trivial representation of H .

Definition 2.4. The (H,G)-equivariant index of D̃ is

indexH,G(D̃) = jH [p̃] ⊗C0(M̃)⋊(G×H) j
G
[D̃] ∈ KK∗(C∗H, C∗G).

The G-equivariant index of D is

indexG(D) = [1H ] ⊗C∗H indexH,G(D̃) ∈ KK∗(C, C∗G).

More generally, for any locally compact group G, compact group H , and locally compact, Hausdorff, proper, cocompact
G × H space X , the G-equivariant index map

indexG: KKG
∗
(C0(X) ⋊ H,C) → K∗(C∗G)

is defined by

indexG(a) = [1H ] ⊗C∗H jH [p̃] ⊗C0(M̃)⋊(G×H) j
G(a),

for a ∈ KKG
∗
(C0(X) ⋊ H,C).
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In the definition of indexG(D), the Kasparov product with [1H ] plays the role of taking the H-invariant part of the
G × H-equivariant index of D̃, analogously to (2.1).

In the rest of this note, we investigate some properties and applications of these indices. First of all, the (H,G)-
equivariant index generalises Atiyah’s [2] and Kawasaki’s [20] classical indices.

Lemma 2.5. If M is compact and G = {e} is the trivial group, then indexH,{e} D̃ ∈ KK (C∗H,C) is the index of D̃ in the sense of
Atiyah. In particular, if H acts locally freely on M, then index{e}(D) is Kawasaki’s orbifold index of D, in the case of presented
orbifolds.

Proof. If M is compact, and G = {e}, then we can take c to be the constant function 1 on M . Then [p̃] is the class of the
only ∗-homomorphism C → C0(M̃). So

indexH×{e}(D̃) = ψ∗[D̃] ∈ KK (C∗H,C),

where ψ is the map from M̃ to a point. The right hand side of the above equality is the index of D̃ in the sense of Atiyah,
see Remark 6.7 in [18]. Pairing this index with [1H ] means taking its H-invariant part, which yields Kawasaki’s index of
D if H acts locally freely. □

Remark 2.6. Theorem 8.18 in [18] is a topological expression for the class (2.3) in terms of the principal symbol of D̃.
This directly implies analogous KK -theoretic index theorems for indexH,G(D̃) and indexG(D).

The case where H acts trivially on M̃ is not the most interesting, but we include it as a consistency check. For any
locally compact, Hausdorff, proper, cocompact G-space X , let

µG
X : KKG(C0(X),C) → KK (C, C∗G)

be the analytic assembly map [8].

Lemma 2.7. If H acts trivially on a locally compact, Hausdorff, proper, cocompact G-space X, then the map

indexG: KKG
∗
(C0(X) ⋊ H,C) = KKG

∗
(C0(X),C) ⊗ R̂(H) → K∗(C∗G)

is given by

indexG(a ⊗ [V ]) =

{
µG

X (a) if V = 1H;

0 otherwise,

for a ∈ KKG
∗
(C0(X),C) and V ∈ Ĥ. Here µG

X is the analytic assembly map, and R̂(H) is the completed representation ring of H.

Proof. It follows from the definition of the descent map and the Peter–Weyl theorem that the descent map

jH : R(H) = KKH
0 (C,C) → KK0(C∗H, C∗H) = EndZ(R(H))

maps [V ] ∈ Ĥ to the projection map projV onto Z[V ]. Now X/H = X , c̃ = c and p̃ = p, so the class

[p̃] ∈ KKH
0 (C, C0(X) ⋊ G) = KK0(C, C0(X) ⋊ G) ⊗ R(H)

equals [p] ⊠ [1H ], where ⊠ is the external Kasparov product. We find that

jH [p̃] = [p] ⊠ proj1H ∈ KK0(C, C0(X) ⋊ G) ⊗ EndZ(R(H)).

Now for a ∈ KKG
∗
(C0(X),C) and V ∈ Ĥ ,

jG(a ⊗ [V ]) = jG(a) ⊠ [V ] ∈ KKG
∗
(C0(X),C) ⊗ R̂(H).

So

indexG(a ⊗ V ) = [p] ⊗C0(X)⋊G jG(a) ⊠ ⟨[V ], proj1H ([1H ])⟩,

which implies the claim. The angular brackets denote the pairing between R̂(H) = HomZ(R(H),Z) and R(H). □

2.3. Free actions by H

If H acts freely on M̃ , then M is a smooth manifold. In that case, the index of Definition 2.4 reduces to the analytic
assembly map, see Proposition 2.8. In this sense, the G-equivariant index generalises the analytic assembly map to
orbifolds. If, furthermore, G = Γ is discrete, then M/Γ is an orbifold. Even if Γ acts freely on M̃ , its action on M is
not necessarily free. (Similarly, the action by H on M̃/Γ is not free in general.) This leads to two different ways to realise
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orbifold indices on spaces of the type that includes compact locally symmetric spaces, Corollary 2.10, which is based on
Theorem 2.9. We work out the example of locally symmetric spaces in Section 4.2.

If H acts freely on M̃ , then D is an elliptic differential operator on the smooth vector bundle E → M in the usual sense.
Then it defines a K -homology class

[D] :=
[
L2(E),

D
√
D2 + 1

, πM
]

∈ KKG(C0(M),C),

where πM is defined by pointwise multiplication.

Proposition 2.8. If H acts freely on M̃, then

indexG(D) = µG
M [D].

This proposition will be proved in Section 3.1.
Consider, for the moment, the case where G = Γ is discrete, and H = {e} is trivial. Then M = M̃ , D̃ = D is elliptic, and

M̃/Γ = M/Γ is an orbifold. Consider the ∗-homomorphism∑
Γ : C

∗
maxΓ → C

given on l1(Γ ) ⊂ C∗
maxΓ by summing over Γ . Let [

∑
Γ ] ∈ KK (C∗

maxΓ ,C) be the corresponding class. If we use maximal
crossed products and group C∗-algebras, then Proposition 2.8, and Theorem 2.7 and Proposition D.3 in [24], imply that

indexΓ (D) ⊗C∗
maxΓ [

∑
Γ ] = (

∑
Γ )∗ indexΓ (D) = dim(ker(D+)Γ ) − dim(ker(D−)Γ ). (2.4)

The right hand side is the index of the operator DΓ on the compact orbifold M/Γ induced by D. This gives another
realisation of the orbifold index in terms of the index of Definition 2.4.

This construction applies more generally. Let IG: C∗
max(G) → C be the continuous extension of the integration map on

L1(G), and [IG] ∈ KK (C∗
maxG,C) the corresponding KK -class.

Theorem 2.9. Suppose that G is unimodular and that H acts freely on M̃. The multiplicity of every irreducible representation
of H in ker(D̃)G is finite, and

indexH,G(D̃) ⊗C∗
maxG [IG] = [ker(D̃+)G] − [ker(D̃−)G] ∈ KK (C∗H,C) = R̂(H). (2.5)

In the setting of Theorem 2.9, we denote the right hand side of (2.5) by indexH (D̃G). If the action by G on M̃ is free,
then this is the index of the transversally elliptic operator D̃G on Γ∞(Ẽ/G) = Γ∞(Ẽ)G induced by D̃.

Corollary 2.10. If G is unimodular and H acts freely on M̃, then ker(D̃)H×G is finite-dimensional, and

dim(ker(D̃+)H×G) − dim(ker(D̃−)H×G) = [1H ] ⊗C∗H indexH,G(D̃) ⊗C∗
maxG [IG]

= (IG)∗(indexG(D))

= [1H ] ⊗ indexH (D̃G).

(2.6)

If G = Γ is discrete, and H acts locally freely, then M̃/(H×Γ ) is an orbifold, and the left hand side of (2.6) is the orbifold
index of the operator on M̃/(H×Γ ) induced by D̃. Then Corollary 2.10 shows that indexH,G(D̃) is a common refinement of
the two indices indexG(D) and indexH (D̃G), which refine the orbifold index of the operator D̃H×Γ on M̃/(H × Γ ) induced
by D̃ in two different ways. In this sense, indexH,G(D̃) contains the most refined index-theoretic information about D̃H×Γ .
This applies for example in the case of compact locally symmetric spaces, see Section 4.2.

Theorem 2.9 and Corollary 2.10 are deduced from Proposition 2.8 in Section 3.2.

Remark 2.11. Let M be a complete Riemannian manifold of dimension n and let Γ be a discrete group acting properly,
cocompactly and isometrically on M . Then X := M/Γ is a compact orbifold. Let P be the O(n)-frame bundle of X . Denote
H = O(n). Then P is a compact manifold acted on freely by H . One can lift the H-frame bundle P from X to M to obtain
a principal H-bundle M̃ over M . Then M̃ has free, commuting actions by H and Γ , and

X = P/H = M̃/(Γ × H).

Let DX be an elliptic differential operator on X . It can be realised as either a Γ -equivariant elliptic differential operator
DΓM on M , or an H-transversally elliptic operator DH

P on P . These two operators have a common lift to an H×Γ -equivariant,
H-transversally elliptic operator D̃ on M̃ . Corollary 2.10 implies that the orbifold index of DX can be obtained from the
(H,Γ )-index of D̃ as

index(DX ) = [1H ] ⊗C∗H indexH,Γ (D̃) ⊗C∗
maxΓ [

∑
Γ ]

= (
∑

Γ )∗(indexΓ (D
Γ
M )) = [1H ] ⊗C∗H indexH (DH

P ).

It is an interesting question in what way the contributions to index(DX ) from singularities in the quotient of M by Γ
or the quotient of P by H are related.
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3. Proofs of the results

3.1. The analytic assembly map

Let us prove Proposition 2.8. Suppose that H acts freely on M̃ , so that M is smooth. Then we have a Morita equivalence
bimoduleM between C0(M̃)⋊H and C0(M), see Situation 2 in [27]. This is a left C0(M̃)⋊H and right Hilbert C0(M)-bimodule,
defined as the completion of Cc(M̃) in the inner product

(ϕ1, ϕ2)C0(M)(m) =

∫
H
ϕ̄1(hm)ϕ2(hm) dh,

for ϕ1, ϕ2 ∈ Cc(M̃) and m ∈ M . The right action by C0(M) on M is defined by pointwise multiplication after pullback along
q. The left action by C0(M̃)⋊ H , denoted by πM, is defined by the standard actions by C0(M̃) and H on Cc(M̃). This yields
an invertible class

[M] := [M, 0, πM] ∈ KKG(C0(M̃) ⋊ H, C0(M)).

Lemma 3.1. We have

[D̃] = [M] ⊗C0(M) [D] ∈ KKG(C0(M̃) ⋊ H,C).

Proof. We use the unbounded picture of KK -theory [4,21,25]. Denoting sets of unbounded KK -cycles by the letter Ψ , we
have

(D̃) = (L2(Ẽ), D̃, πM) ∈ ΨG(C0(M̃) ⋊ H,C);

(D) = (L2(E),D, πM ) ∈ ΨG(C0(M),C);

(M) = (M, 0, πM,H ) ∈ ΨG(C0(M̃) ⋊ H, C0(M)).

We will show that

(D̃) = (M) ⊗C0(M) (D). (3.1)

First note that we have an isomorphism of C0(M̃) ⋊ H-modules

M ⊗C0(M) L2(E)
∼=
−→ L2(Ẽ),

mapping ϕ ⊗ s to ϕq∗s, for ϕ ∈ Cc(M̃) and s ∈ L2(E). Now Theorem 13 in [21] states that the equality (3.1) holds if

(1) for all ϕ ∈ C∞
c (M̃), the operators

D̃ ◦ Tϕ − Tϕ ◦ D:Γ∞

c (E) → L2(Ẽ) and

D ◦ T ∗

ϕ − T ∗

ϕ ◦ D̃:Γ∞

c (Ẽ) → L2(E)

are bounded, where Tϕ denotes tensoring with ϕ;
(2) the resolvent of D̃ is compatible with the zero operator in the sense of Lemma 10 in [21], which is a vacuous

condition; and
(3) a positivity condition that trivially holds because the operator in the cycle (M) is zero.

To verify the first condition, we note that, since D̃ is a first order operator,

D̃ ◦ Tϕ − Tϕ ◦ D = σD̃(dϕ) ⊗ 1,

which is a bounded operator. And D ◦ T ∗
ϕ − T ∗

ϕ ◦ D̃ is minus the adjoint of the above operator, hence also bounded. □

Next, consider the maps

[p̃] ∈ KKH (C, C0(M̃) ⋊ G)
jH
−→ KK (C∗H, C0(M̃) ⋊ (G × H))

−⊗C0(M̃)⋊(G×H)j
G
[M]

−−−−−−−−−−−−→ KK (C∗H, C0(M) ⋊ G)
[1H ]⊗C∗H−

−−−−−−→ KK (C, C0(M) ⋊ G) ∋ [p]. (3.2)

Lemma 3.2. The composition of the maps (3.2) maps the class [p̃] to [p].

Proof. We have

[p̃] = [p̃(C0(M̃) ⋊ G), 0, πC],
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where πC is the representation of C by scalar multiplication. Hence

jH [p̃] = [p̃H (C0(M̃) ⋊ (G × H)), 0, πH ],

where πH is the representation of C∗H defined by convolution on H , and p̃H is the idempotent in C0(M̃)⋊ (G×H) defined
by extending p̃ constant in the H-direction. (Recall that H is compact.)

Now let MG be the (C0(M̃) ⋊ (G × H), C0(M) ⋊ G)-bimodule constructed from M as in the definition of jG. Then MG
implements the Morita equivalence between C0(M̃) ⋊ (G × H) and C0(M) ⋊ G, and

p̃H (C0(M̃) ⋊ (G × H)) ⊗C0(M̃)⋊(G×H) MG = p(C0(M) ⋊ G).

So

jH [p̃] ⊗C0(M̃)⋊(G×H) j
G
[M] = [p(C0(M) ⋊ G), 0, πH ].

Finally, pairing with [1H ] means replacing πH by πC, so the claim follows. □

Proof of Proposition 2.8. By one of the equivalent definitions of the analytic assembly map, and by Lemma 3.2, we have

µG
M [D] = [p] ⊗C0(M)⋊G jG[D]

= [1H ] ⊗C∗H jH [p̃] ⊗C0(M̃)⋊(G×H) j
G
[M] ⊗C0(M)⋊G jG[D]

= [1H ] ⊗C∗H jH [p̃] ⊗C0(M̃)⋊(G×H) j
G([M] ⊗C0(M) [D]).

So the claim follows from Lemma 3.1. □

3.2. Proofs of Theorem 2.9 and Corollary 2.10

We now deduce Theorem 2.9 from Proposition 2.8 and the results in the appendix to [24], and then deduce
Corollary 2.10 from Theorem 2.9. We still assume that H acts freely on M̃ .

Let V ∈ Ĥ . We will write
[V ]1 ∈ KK (C∗H,C);
[V ]2 ∈ KK (C, C∗H) (3.3)

for the classes defined by V . Consider the elliptic operator D̃⊗1V on Γ∞(Ẽ)⊗V . Let EV → M be the quotient of Ẽ ⊗V by
H . (Note that M is smooth and EV is a well-defined vector bundle because H acts freely on M̃ .) Let DV be the restriction
of D̃ ⊗ 1V to

Γ∞(M, EV ) = (Γ∞(Ẽ) ⊗ V )H .

This is a G-equivariant, elliptic operator. The following result generalises Proposition 2.8, which we use in its proof.

Proposition 3.3. For all V ∈ Ĥ,

µG
M [DV ] = [V ]2 ⊗C∗H (indexH,G(D̃)).

Proof. For any G-C∗-algebra B and (G × H × H)-C∗-algebra A, let

ResH×H
∆(H): KK

G(A ⋊ (H × H), B) → KG(A ⋊ H, B)

be defined by restriction to the diagonal in H × H (and similarly for the case where G = {e}). Consider the action by
G × H × H on M̃ , where the second factor H acts trivially. Consider the diagram

KKG
0 (C0(M̃) ⋊ (H × H),C)

indexH×H,G →→

ResH×H
∆(H)
↓↓

KK0(C∗(H × H), C∗G)

ResH×H
∆(H)

↓↓
KKG

0 (C0(M̃) ⋊ H,C)
indexH,G →→ KK0(C∗H, C∗G)

[1H ]⊗C∗H−

↓↓
KKG

0 (C0(M),C)
µG
M →→

[M]⊗C0(M)− ∼=

↑↑

KK0(C, C∗G)

(3.4)

The bottom part of this diagram commutes by Proposition 2.8. Because the second factor H acts trivially on M̃ , the
projection p̃ also defines a class in KKH×H (C, C0(M̃) ⋊ G), which we denote by [p̃]H×H . Let

1C∗H ∈ KK (C∗H, C∗H)
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be the identity element. Again, because the second factor H acts trivially on M̃ , we have

jH×H
[p̃]H×H = jH [p̃] ⊠ 1C∗H

∈ KK (C∗(H × H), C0(M̃) ⋊ (G × H × H)) = KK (C∗H ⊗ C∗H, C0(M̃) ⋊ (G × H) ⊗ C∗H), (3.5)

where ⊠ denotes the exterior Kasparov product. This equality implies that the top part of (3.4) commutes. By Lemma 3.1,
we have

[M] ⊗C0(M) [DV ] = ResH×H
∆(H)[D̃ ⊗ 1V ].

Here we view D̃ ⊗ 1V as a G × H × H-equivariant operator, where the second factor H acts trivially on M̃ , and on E ⊗ V
via its action on V . By commutativity of (3.4), we therefore have

µG
M [DV ] = [1H ] ⊗C∗H

(
ResH×H

∆(H)(indexH×H,G(D̃ ⊗ 1V ))
)
. (3.6)

Next, again using the fact that the second factor H acts trivially on M̃ , we have

[D̃ ⊗ 1V ] = [D̃] ⊠ [V ]1 ∈ KKG(C0(M̃) ⋊ (H × H),C) = KKG((C0(M̃) ⋊ H) ⊗ C∗H,C).

Here ⊠ again denotes the exterior Kasparov product. By this equality and (3.5),

indexH×H,G(D̃ ⊗ 1V ) = (jH [p̃] ⊠ 1C∗H ) ⊗C0(M̃)⋊(G×H)⊗C∗H (jG[D̃] ⊠ [V ]1)

= indexH,G(D̃) ⊠ [V ]1.
(3.7)

Finally, we have for all C∗-algebras A and all x ∈ KK (C∗H, A),

[1H ] ⊗C∗H ResH×H
∆(H)(x ⊠ [V ]1) = [V ]2 ⊗C∗H x.

Combining this equality with (3.6) and (3.7), we conclude that the desired equality holds. □

Proof of Theorem 2.9. Proposition 3.3 implies that

(IG)∗ indexH,G(D̃) =

⨁
V∈Ĥ

([V ]2 ⊗C∗H (IG)∗ indexH,G(D̃)) ⊗ [V ]1

=

⨁
V∈Ĥ

((IG)∗µG
M (DV )) ⊗ [V ]1

By unimodularity of G, Theorem 2.7 and Proposition D.3 in [24] imply that the latter expression equals⨁
V∈Ĥ

(
dim(ker(D+

V )
G) − dim(ker(D−

V )
G)

)
⊗ [V ]1 = [ker(D̃+)G] − [ker(D̃−)G]. □

Proof of Corollary 2.10. Associativity of the Kasparov product and Theorem 2.9 imply that

[1H ] ⊗C∗H indexH (DG) = (IG)∗ indexG(D).

Because G is unimodular, Theorem 2.7 and Proposition D.3 in [24] imply that the right hand side equals

dim(ker(D̃+)H×G) − dim(ker(D̃−)H×G). □

4. Symmetric spaces and locally symmetric spaces

In this section, we consider a Lie group G, a maximal compact subgroup K < G, the manifold M̃ = G, and the operator
D̃ which is the pullback of the Spin-Dirac operator on G/K . Then we obtain a realisation of Dirac induction as a Kasparov
product, and an index formula for compact locally symmetric spaces.

4.1. Dirac induction

Using the (H,G)-equivariant index from Definition 2.4, we can realise the Dirac induction map from the Connes–
Kasparov conjecture [8,9,23,32] as a Kasparov product.

In this section, we consider a particular transversally elliptic Dirac-type operator. Let G be an almost connected Lie
group, and let K < G be maximal compact. Let p ⊂ g be the orthogonal complement of kwith respect to an Ad(K )-invariant
inner product on g. Suppose that the adjoint representation K → SO(p) of K in p lifts to a homomorphism

K → Spin(p). (4.1)

(This is true if we replace G by a double cover if necessary.) Let ∆p be the standard representation of Spin(p). We view it
as a representation of K via the map (4.1).
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Let {X1, . . . , Xl} be an orthonormal basis of p. We denote the left regular representation of G in C∞(G) by L and the
Clifford action by p on ∆p by c. For V ∈ K̂ , consider the operator

DV
G,K :=

l∑
j=1

L(Xj) ⊗ c(Xj) ⊗ 1V (4.2)

on the space

C∞(G) ⊗∆p ⊗ V (4.3)

of sections of the trivial G × K -equivariant vector bundle

G × (∆p ⊗ V ) → G.

The operator DV
G,K is G × K -equivariant, and K -transversally elliptic. So we in particular have the element

D-Ind := indexK ,G(DC
G,K ) ∈ KK∗(C∗K , C∗G). (4.4)

Here C is the trivial representation of K . If G/K is even-dimensional, then ∆p is Z2-graded, and this element lies in even
KK -theory. For odd-dimensional G/K , ∆p is ungraded, and this index lies in odd KK -theory.

Proposition 4.1. For all V ∈ K̂ ,

[V ]2 ⊗C∗K D-Ind = D-IndG
K [V ] ∈ K∗(C∗G),

where [V ]2 is as in (3.3), and on the right hand side, D-IndG
K is the Dirac induction map.

Proof. Let V ∈ K̂ . Let DV
G/K be the restriction of DV

G,K to the space of K -invariant elements of (4.3), which is the space of
sections of the vector bundle

G ×K (∆p ⊗ V ) → G/K .

Proposition 3.3 implies that for all V ∈ K̂ ,

[V ] ⊗C∗K D-Ind = µG
G/K [DV

G/K ] = D-IndG
K [V ]. □

Let η ∈ KK∗(C∗G, C∗K ) be the dual-Dirac element; see for example Section 2.2 of [22]. By Proposition 4.1, a sufficient
condition for injectivity of Dirac induction is

D-Ind⊗C∗Gη = 1C∗K ∈ KK0(C∗K , C∗K ),

whereas a sufficient condition for surjectivity is

η ⊗C∗K D-Ind = 1C∗G ∈ KK0(C∗G, C∗G).

Bijectivity of Dirac induction was proved in [9,23]. See also forthcoming work by Higson, Song and Tang.

4.2. An index theorem for Spin-Dirac operators on compact locally symmetric spaces

Consider a compact locally symmetric space: an orbifold of the form X = Γ \G/K where G is a connected, semisimple
Lie group, K < G is a maximal compact subgroup and Γ is a cocompact, discrete subgroup in G.

In several contexts [12,19,31], it was shown that traces defined by orbital integrals on discrete groups are useful tools
to extract information from classes in K -theory of group C∗-algebras. (This is also true for orbital integrals on semisimple
Lie groups [16] and higher analogues [28].) For a discrete group Γ , the orbital integral of a function f ∈ l1(Γ ) over a
conjugacy class (γ ) of an element γ ∈ Γ , is the sum of f over (γ ):

τγ (f ) =

∑
h∈(γ )

f (h).

We assume that this trace τγ extends to a continuous functional on a dense subalgebra A(Γ ) ⊂ C∗Γ , closed under
holomorphic functional calculus (a smooth subalgebra for short). For example, this is true for every group if γ = e, and
for every γ if G has real rank one.

Lemma 4.2. If G has real rank one, then τγ defines a continuous linear functional on a smooth subalgebra of C∗

redΓ .

Proof. If G has real rank one, then G/K has negative sectional curvature, and hence it is a hyperbolic space in the sense of
Definition 3.1 in [26]. Since Γ acts cocompactly on G/K , the Svarč–Milnor lemma implies that it is quasi-isometric to G/K ,
with respect to any word-length metric. Hyperbolicity of metric spaces is preserved by quasi-isometries (see 7.2 in [13]),
so that Γ is hyperbolic. See also Section 2.7 in [13]. Proposition 5.5 in [26] implies that an algebra as in the lemma exists
if Γ is hyperbolic. □
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Examples of groups with real rank one are O(n, 1) and U(n, 1). If the real rank of G is at least two, then Γ is not
hyperbolic in general. (Then the sectional curvature of G/K does not have a negative upper bound, as G/K admits an
embedding of a Euclidean space of dimension at least two.)

By Corollary 2.10, in a sense the most refined index-theoretic information about an elliptic operator DX on the compact
symmetric space X = Γ \G/K is the (K ,Γ )-index of its lift D̃ to G. A natural way to obtain potentially computable numbers
from the index of D̃ in KK (C∗K , C∗Γ ) is to evaluate the component in R̂(K ) at a group element (where this makes sense),
and to apply suitable traces to the component in C∗Γ , such as traces defined by orbital integrals.

Because of our assumption that τγ extends to a smooth subalgebra A(G) of C∗G, it induces a map

τγ : K0(C∗Γ ) = K0(A(G)) → C.

Therefore, it is a natural problem to compute the element

τγ (indexK ,Γ (D̃)) ∈ R̂(K ) ⊗ C. (4.5)

We will do this for the operator DC
G,K as in (4.2).

We denote the character of a finite-dimensional representation space V of K , by χV . If V is Z2 -graded, as V = ∆p is,
then χV is the difference of the characters of the even and odd parts of V .

Proposition 4.3.

(a) if γ is not a torsion element and nontrivial, then τγ (indexK ,Γ (D̃)) = 0.

Suppose that G has discrete series representations, and let DC
G,K be as in (4.2).

(b) For γ = e,

τe(indexK ,Γ (DC
G,K )) = vol(Γ \G)

∑
π

dπ [Vπ ],

where dπ is the formal degree of the discrete series representation π of G, and Vπ ∈ K̂ is the irreducible representation
corresponding to π via Dirac induction.

(c) If γ is a regular element of a compact Cartan subgroup of G contained in K , then

τγ (indexK ,Γ (DC
G,K )) = (−1)dim(G/K )/2 vol(ZG(γ )/ZΓ (γ ))

χ∆p (γ )

∑
[V ]∈K̂

χV (γ )[V ].

Proof. For V ∈ K̂ , let DV be as in Section 3.2. By Proposition 3.3,

indexK ,Γ (DC
G,K ) =

∑
V∈K̂

[V ] ⊗ µΓG/K (DV )

∈ R̂(K ) ⊗ K∗(C∗Γ ) = KK (C∗K , C∗Γ ). (4.6)

If γ is not a torsion element, then it has no fixed points in G/K . As a special case of Theorem 5.10 in [31], this implies
that τγ (indexΓ (DV )) = 0, so part (a) follows.

For a semisimple element g ∈ G, let τGg be the corresponding orbital integral:

τGg (f ) =

∫
G/ZG(g)

f (xgx−1) d(xZG(g)),

for f such that this converges.
If D̃ = DC

G,K as in (4.2), then for all discrete series representations π of G, the index formula Theorem 6.12 in [30]
implies in particular that

τe(µΓG/K (DVπ )) = vol(Γ \G)τGe (indexG(DVπ ))

By Lemma 5.4 in [15], τGe (indexG(DVπ )) = dπ . And if V ∈ K̂ does not correspond to a discrete series representation, then
indexe DVπ = 0. See Corollary 7.3.B in [10]. So part (b) follows.

For part (c), we use the fact that

τγ (µΓG/K (DV )) = vol(ZG(γ )/ZΓ (γ ))τGγ (µ
G
G/K (DV )).

This follows from the topological expression for these indices in Theorem 5.10 in [31]. So

τγ (indexK ,Γ (D̃)) = vol(ZG(γ )/ZΓ (γ ))
∑
[V ]∈K̂

τGγ (µ
G
G/K (DV ))[V ].

Part (c) now follows from Theorem 3.2 in [16]. □
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A version of part (b) of Proposition 4.3 was used by Atiyah and Schmid to obtain formal degrees of discrete series of
G [3].

Remark 4.4. For general Γ × K -equivariant, K -transversally elliptic operators D̃, a topological expression for the
coefficients of all irreducible representations of V in (4.5) can be found by combining (4.6) with a generalisation of
Theorem 6.1 in [31] to arbitrary elliptic operators, as in the proof of Theorem 2.5 in [15].
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