期刊论文详细信息
JOURNAL OF COMBINATORIAL THEORY SERIES A 卷:100
Some observations on Dyson's new symmetries of partitions
Article
Berkovich, A ; Garvan, FG
关键词: partitions;    congruences;    Dyson's rank;    cranks;    Euler's pentagonal number theorem;    modular partitions;    q-series;    polynomial analogs;   
DOI  :  10.1006/jcta.2002.3281
来源: Elsevier
PDF
【 摘 要 】

We utilize Dyson's concept of the adjoint of a partition to derive an infinite family of new polynomial analogs of Euler's Pentagonal Number Theorem. We streamline Dyson's bijection relating partitions with crank less than or equal tok and those with k in the Rank-Set of partitions. Also, we extend Dyson's adjoint of a partition to MacMahon's modular partitions with modulus 2. This way we find a new combinatorial proof of Gauss's famous identity. We give a direct colubinatorial proof that for n > 1 the partitions of n with crank k are equinumerous with partitions of n with crank -k. (C) 2002 Elsevier Science (USA).

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1006_jcta_2002_3281.pdf 282KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次